Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riggs, B.C.; Elupula, R.; Grayson, S.M.; Chrisey, D.B. Polymer nano composites for energy storage applications. J. Mater. Chem. A 2015, 2, 3853–3863. [Google Scholar]
- Riggs, B.C.; Elupula, R.; Rehm, C.; Adireddy, S.; Grayson, S.M.; Chrisey, D.B. Click-in ferroelectronic nanoparticles for dielectric storage. ACS Appl. Mater. Interfaces 2015, 7, 17819–17825. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, M.; Puli, V.S.; Elupula, R.; Adireddy, S.; Riggs, B.C.; Chrisey, D.B.; Grayson, S.M. Core-shell structured poly(glycidyl methacrylates)/BaTiO3 nano composites prepared by surface-initiated atom transfer radical polymerization: A novel material for high energy density dielectric storage. J. Polym. Sci. A Polym. Chem. 2015, 53, 719–728. [Google Scholar] [CrossRef]
- Riggs, B.C.; Adireddy, S.; Rehm, C.H.; Puli, V.S.; Elupula, R.; Chrisey, D.B. Polymer nano composites for energy storage applications. In Proceedings of ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, PA, USA, 28 September–1 October 2010; pp. 245–249.
- Sánchez, F.A.; Redondo, M.; González-Benito, J. Influence of BaTiO3 submicrometric particles on the structure, morphology, and crystallization behavior of poly(vinylidene fluoride). Appl. Polym. Sci. 2014, 132. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, Y.; Chen, W.; Wang, J.; Guan, Y.; Du, J.; Zhang, X.; Ma, J.; Li, M.; Lin, Y.; et al. Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nano composites. Nano Energy 2015, 18, 176–186. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Wang, G.; Wang, Y.; He, J.; Jiang, P. Increasing energy efficiency and breakdown strength of high-energy-density polymer nano-composites by engineering the Ba0.7Sr0.3TiO3 nano-wire surface via reversible addition fragmentation chain transfer polymerization. J. Phys. Chem. C 2015, 119, 25307–25318. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, L.; Huang, X.; Li, S.; Jiang, P. Achieving large dielectric property improvement in polymer/carbon nanotube composites by engineering the nanotube surface via atom transfer radical polymerization. Carbon 2015, 95, 895–903. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P. Core-shell structured high-k polymer nano composites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, W.L.; Wang, J.P.; Yin, J.H.; Fei, W.D. Core-shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance. J. Mater. Chem. A 2015, 3, 20313–20321. [Google Scholar] [CrossRef]
- Inui, T.; Koga, H.; Nogi, M.; Komoda, N.; Suganuma, K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 2015, 27, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Bai, J. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties. J. Phys. D Appl. Phys. 2015, 48, 455303. [Google Scholar] [CrossRef]
- Chen, T.; Qiu, J.; Zhu, K.; Wang, J.; Li, J. Copper phthalocyanine oligomer noncovalent functionalized graphene-polyurethane dielectric elastomer composites for flexible micro-actuator. Soft Mater. 2015, 13, 210–218. [Google Scholar] [CrossRef]
- Ren, L.; Meng, X.; Zha, J.; Dang, Z. Coulomb block effect inducing distinctive dielectric properties in electroless plated barium titanate@silver/poly (vinylidene fluoride) nano-composites. RSC Adv. 2015, 5, 65167–65174. [Google Scholar] [CrossRef]
- Chen, M.; Yin, J.; Jin, R.; Yao, L.; Su, B.; Lei, Q. Dielectric and mechanical properties and thermal stability of polyimide-graphene oxide composite films. Thin Solid Films 2015, 584, 232–237. [Google Scholar] [CrossRef]
- Anjana, J.; Prashanth, K.J.; Asheesh, K.S.; Arpit, J.; Rashmi, P.N. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar]
- Dang, Z.; Lin, Y.; Xu, H.; Shi, C.; Li, S.; Bai, J.; Tang, H.; Lin, Y.; Sodano, H.A. Synthesis of high aspect ratio BaTiO3 nano-wires for high energy density nano-composite capacitors, fabrication and dielectric characterization of advanced BaTiO3/Polyimide nano-composite films with high thermal stability. Adv. Funct. Mater. 2008, 18, 1509–1517. [Google Scholar] [CrossRef]
- Zhang, G.; Liao, Q.; Zhang, Z.; Liang, Q.; Zhao, Y.; Zheng, X.; Zhang, Y. Novel piezoelectric paper based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 2015. [Google Scholar] [CrossRef]
- Gonzalez-Benito, J.; Martinez-Tarifa, J.; Sepúlveda-García, M.E.; Portillo, R.A.; Gonzalez-Gaitano, G. Polymer testing, composites based on HDPE filled with BaTiO3 submicrometric. Polym. Test. 2013, 32, 1342–1349. [Google Scholar] [CrossRef]
- Olmos, D.; Montero, F.; González-Gaitano, G.; González-Benito, J. Structure and morphology of composites based on polyvinylidene fluoride filled with BaTiO3 submicrometer particles: Effect of processing and filler content. Polym. Compos. 2013, 34, 2094–2104. [Google Scholar] [CrossRef]
- Jeong, C.K.; Lee, J.; Han, S.; Ryu, J.; Hwang, J.T.; Park, D.Y.; Park, J.H.; Lee, S.S.; Byun, M.; Ko, S.H.; et al. A Hyper-Stretchable Elastic-Composite Energy Harvester. Adv. Mater. 2015, 27, 2866. [Google Scholar] [CrossRef] [PubMed]
- Deka, B.K.; Maji, T.K. Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym. Eng. Sci. 2012, 52, 1516–1523. [Google Scholar] [CrossRef]
- Al-Sagheer, F.; Ali, A.A.M.; Muslim, S.; Ahmad, Z. Thermal and mechanical properties of chemically bonded aramid-silica nano-composites. Sci. Technol. Adv. Mater. 2006, 7, 111–118. [Google Scholar] [CrossRef]
- Zua, L.; Li, R.; Jin, L.; Lian, H.; Liu, Y.; Cui, X. Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol-gel approach. Prog. Nat. Sci. Mater. Int. 2014, 24, 42–49. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Polymer nano-composite dielectrics: The role of the interface. IEEE Trans. Dielectr. Electr Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; Crone, R.K.M.; Schadler, L.S. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nano dielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [Google Scholar] [CrossRef]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R. Polyethylene-based dielectric composites containing polyhedral oligomeric silsesquioxanes obtained by ball milling. Trans. Electr. Electron. Mater. 2015, 16, 53–61. [Google Scholar] [CrossRef]
- Lewis, T.J. Interfaces and nanodielectrics are synonymous. In Proceedings of the 2004 IEEE International Conferences on Solid Dielectrics, ICSD 2004, Toulouse, France, 5–9 July 2004; pp. 792–795.
- Tanaka, T. Dielectric nano composites with insulating properties. IEEE Trans. Dielectr. Electr Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Mohanty, A.; Srivastava, V.K. Dielectric breakdown performance of alumina/epoxy resin nano composites under high voltage application. Mater. Des. 2013, 47, 711–716. [Google Scholar] [CrossRef]
- Rytöluoto, I.; Lahti, K.; Karttunen, M.; Koponen, M. Large-area dielectric breakdown performance of polymer films—Part I: Measurement method evaluation and statistical considerations on area-dependence. IEEE Trans. Dielectr. Electr Insul. 2015, 22, 689–700. [Google Scholar] [CrossRef]
- Mackey, M.; Flandin, L.; Hiltner, A.; Baer, E. Confined crystallization of PVDF and a PVDF-TFE copolymer in nano layered films. J. Phys. D Appl. Phys. 2011, 49, 1750–1761. [Google Scholar]
- Mackey, M.; Schuele, D.; Zhu, L.; Baer, E. Reduction of dielectric hysteresis in multilayered films via nanoconfinement. Macromolecules 2012, 45, 1954–1962. [Google Scholar] [CrossRef]
- Tseng, J.; Tang, S.; Zhou, Z.; Zhu, L. Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films. Polymer 2013, 55, 8–14. [Google Scholar] [CrossRef]
- Fillery, S.P.; Koerner, H.; Drummy, L.; Dunkerley, E.; Durstock, M.F.; Schmidt, D.F.; Vaia, R.A. Nanolaminates: Increasing dielectric breakdown strength of composites. ACS Appl. Mater. Interfaces 2012, 4, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, C.A.; Koerner, H.; Meth, J.S.; Dang, A.; Hui, C.M.; Matyjaszewski, K.; Bockstaller, M.R.; Durstock, M.F.; Vaia, R.A. Performance of dielectric Nano composites: Matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. ACS Appl. Mater. Interfaces 2014, 6, 21500–21509. [Google Scholar] [CrossRef] [PubMed]
- Oberdisse, J.; Demé, B. Structure of latex-silica nano-composite films: A small-angle neutron scattering study. Macromolecules 2002, 35, 4397–4405. [Google Scholar] [CrossRef]
- Ma, J.; Xu, Q.; Zhou, J.; Zhang, J.; Zhang, L.; Tang, H.; Chen, L. Synthesis and biological response of casein-based silica nano-composite film for drug delivery system. Colloids Surf. B Biointerfaces 2013, 111, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies; ASTM D149; ASTM International: West Conshohocken, PA, USA, 2013.
- Kamel, S. Nanotechnology and its applications in lingo cellulosic, composites, a mini review. EXPRESS Polym. Lett. 2007, 1, 546–575. [Google Scholar] [CrossRef]
- Peng, R.; Wang, Y.; Tang, W.; Yang, Y.; Xie, X. Progress in Imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers 2013, 5, 847–872. [Google Scholar] [CrossRef]
- Fréchet, M. Sur la loi de probabilité de l'écart maximum. Annales de la Société Polonaise de Mathematique 1927, 6, 93–116. [Google Scholar]
- Wang, Y.; Li, J.; Deng, Y. Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)-clay nano-composite films via nanofiller surface charge modulation. RSC Adv. 2015, 5, 85884–85888. [Google Scholar] [CrossRef]
- Hahm, J. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays. Langmuir 2014, 30, 9891–9904. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Wang, W.; Duan, Q.X.C. Review article: Fabrication of nanofluidic devices. Biomicrofluidics 2013, 7, 026501. [Google Scholar] [CrossRef] [PubMed]
- Takala, M.; Ranta, H.; Nevalainen, P.; Pakonen, P.; Pelto, J.; Karttunen, M.; Virtanen, S.; Koivu, V.; Pettersson, M.; Sonerud, B.; et al. Dielectric properties and partial discharge endurance of polypropylene-silica nano-composite. IEEE Trans. Dielectr. Electr Insul. 2010, 17, 1259–1267. [Google Scholar] [CrossRef]
- Peter, B.; Shiva, B.; Yogesh, A.; Loye, H. Polymer composite and nano-composite dielectric materials for pulse power energy storage. Materials 2009, 2, 1697–1733. [Google Scholar]
- Yang, M.H.; Hong, S.B.; Choi, B.G. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudo capacitors. Phys. Chem. Chem. Phys. 2015, 17, 29874–29879. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S. Editorial, electric breakdown through nano dielectric films. J. Mater. Sci. Eng. 2012, 1. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites. Materials 2016, 9, 104. https://doi.org/10.3390/ma9020104
Abdalla S, Al-Marzouki F, Obaid A, Gamal S. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites. Materials. 2016; 9(2):104. https://doi.org/10.3390/ma9020104
Chicago/Turabian StyleAbdalla, Soliman, Fahad Al-Marzouki, Abdullah Obaid, and Salah Gamal. 2016. "Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites" Materials 9, no. 2: 104. https://doi.org/10.3390/ma9020104
APA StyleAbdalla, S., Al-Marzouki, F., Obaid, A., & Gamal, S. (2016). Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites. Materials, 9(2), 104. https://doi.org/10.3390/ma9020104