Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition and Thickness of the Alloy Native Passive Film
2.2. Electrochemical Behavior of the Ti-23Hf-3Mo-4Sn Alloy
2.2.1. Electrochemical Behavior from Cyclic Potentiodynamic Curves
2.2.2. Corrosion Resistance from Linear Polarization Tafel Representations
2.2.3. Electrochemical Behavior from EIS
2.2.4. Long-Term Corrosion Resistance from Monitoring of the Open Circuit Potentials
2.3. In Vitro Behavior of Human Umbilical Vein Endothelial Cells
2.3.1. Cell Viability/Proliferation
2.3.2. Expression of the Endothelial Cell Functional Markers
3. Materials and Methods
3.1. Alloy Synthesis
3.2. Alloy Native Passive Film Characterization
3.3. Electrochemical Characterization
3.4. Cell Culture
3.5. Cell Proliferation
3.6. Immunocytochemical Staining of HUVECs Grown on Ti-23Hf-3Mo-4Sn Alloy
3.7. NO Release Assay
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Ikehara, Y.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006, 54, 2419–2429. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Yang, R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater. Sci. Eng. A 2006, 441, 112–118. [Google Scholar] [CrossRef]
- Castany, P.; Gordin, D.M.; Drob, S.I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T. Deformation mechanisms and biocompatibility of the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy. Shape Mem. Superelast. 2016, 2, 18–28. [Google Scholar] [CrossRef]
- Castany, P.; Ramarolahy, A.; Prima, F.; Laheurte, P.; Curfs, C.; Gloriant, T. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloy. Acta Mater. 2015, 88, 102–111. [Google Scholar] [CrossRef]
- Fu, J.; Yamamoto, A.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015, 17, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.F.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.F.; Laillé, D.; Héraud, L.; Gordin, D.M.; Castany, P.; Gloriant, T. Design of a novel superelastic Ti-23Hf-3Mo-4Sn biomedical alloy combining low modulus, high strength and large recovery strain. Mater. Lett. 2016, 177, 39–41. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Natl Assn of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Niinomi, M. Low modulus titanium alloys for inhibiting bone atrophy. In Biomaterials Science and Engineering; Pignatello, R., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 249–268. Available online: http://www.intechopen.com/books (accessed on 20 May 2016).
- Jeong, Y.-H.; Lee, K.; Choe, H.-C.; Ko, Y.-M.; Brantley, W.A. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use. Thin Solid Films 2009, 517, 5365–5369. [Google Scholar] [CrossRef]
- Moon, B.-H.; Choe, H.-C.; Brantley, W.A. Surface characteristics of TiN/ZrN coated nanotubular structure on the Ti-35Ta-xHf alloy for bio-implant applications. Appl. Surf. Sci. 2012, 258, 2088–2092. [Google Scholar] [CrossRef]
- Rogal, L.; Czerwinski, F.; Jochym, P.T.; Litynska-Dobrzynska, L. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions. Mater. Des. 2016, 92, 8–17. [Google Scholar] [CrossRef]
- Baer, D.R.; Egelhard, M.H.; Lea, A.S.; Nachimuthu, P.; Drobay, T.C.; Kin, J.; Lee, B.; Mathews, C.; Opila, R.L.; Saraf, L.V.; et al. Comparison of the sputter rates of the oxide films relative to the sputter rate of SiO2. J. Vac. Sci. Technol. A 2010, 28, 1060–1072. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, A.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database. In NIST Standard Reference Database 20; version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics USA, Inc.: Chamhassen, MN, USA, 1995. [Google Scholar]
- Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility; M. Decker Inc.: New York, NY, USA, 1992. [Google Scholar]
- Blackwood, D.J.; Chua, A.W.C.; Seah, K.H.W.; Thampuran, R. Corrosion behaviour of porous titanium-graphite composite designed for surgical implants. Corros. Sci. 2000, 42, 481–503. [Google Scholar] [CrossRef]
- Wang, B.L.; Zheng, Y.F.; Zhao, L.C. Electrochemical corrosion behavior of biomedical Ti-22Nb and Ti-22Nb-6Zr alloys in saline medium. Mater. Corros. 2009, 60, 788–794. [Google Scholar] [CrossRef]
- Woldemedhin, M.T.; Raabe, D.; Hassel, A.W. Characterization of thin oxides of Ti-Nb alloys by electrochemical impedance spectroscopy. Electrochim. Acta 2012, 82, 324–332. [Google Scholar] [CrossRef]
- Milosev, I.; Metikos-Hukovic, M.; Strenhblw, H.-H. Passive film on orthopaedic TiAlV alloy formed in physiological solution by X-ray photoelectron spectroscopy. Biomaterials 2000, 21, 2103–2113. [Google Scholar] [CrossRef]
- Vasilescu, E.; Drob, P.; Raducanu, D.; Cinca, I.; Mareci, D.; Calderon Moreno, J.M.; Popa, M.; Vasilescu, C.; Mirza Rosca, J.C. Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros. Sci. 2009, 51, 2885–2896. [Google Scholar] [CrossRef]
- Mansfeld, F. Simultaneous determination of instantaneous corrosion rates and Tafel slopes from polarization resistance measurements. J. Electrochem. Soc. 1973, 120, 515–518. [Google Scholar] [CrossRef]
- Jones, D. Principles and Prevention of Corrosion, 2nd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Li, J.; Yang, L.; Ma, H.; Jiang, K.; Chang, C.; Wang, J.-Q.; Song, Z.; Wang, X.; Li, R.-W. Improved corrosion resistance of novel Fe-based amorphous alloys. Mater. Des. 2016, 95, 225–230. [Google Scholar] [CrossRef]
- Robin, A.; Carvalho, O.A.S.; Schneider, S.G.; Schneider, S. Corrosion behavior of Ti-xNb-13Zr alloys in Ringer’s solution. Mater. Corros. 2008, 59, 929–933. [Google Scholar] [CrossRef]
- Milosev, I.; Zerjav, G.; Calderon Moreno, J.M.; Popa, M. Electrochemical properties, chemical composition, and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy. Electrochim. Acta 2013, 99, 176–189. [Google Scholar] [CrossRef]
- Robin, A.; Mierelis, J.P. Influence of fluoride concentration and pH on corrosion behaviour of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva. Mater. Corros. 2007, 58, 173–180. [Google Scholar] [CrossRef]
- Assis, S.L.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta 2006, 51, 1815–1819. [Google Scholar] [CrossRef]
- Cremasco, A.; Osorio, W.R.; Freire, C.M.A.; Garcia, A.; Caram, R. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses. Electrochim. Acta 2008, 53, 4867–4874. [Google Scholar] [CrossRef]
- Alves, V.A.; Reis, R.Q.; Santos, I.C.B.; Souza, D.G.; Goncleves, T.F.; Pereira-da-Silva, M.A.; Rossi, A.; da Silva, L.A. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 °C and 37 °C. Corros. Sci. 2009, 51, 2473–2482. [Google Scholar] [CrossRef]
- Tamilselvi, S.; Rajendran, N. In vitro corrosion behaviour of Ti-5Al-2Nb-1Ta alloy in Hanks solution. Mater. Corros. 2007, 58, 285–289. [Google Scholar] [CrossRef]
- Martins, D.Q.; Osório, W.R.; Souza, M.E.P.; Caram, R.; Garcia, A. Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim. Acta 2008, 53, 2809–2817. [Google Scholar] [CrossRef]
- Souto, R.M.; Laz, M.M.; Reis, R.L. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials 2003, 24, 4213–4221. [Google Scholar] [CrossRef] [Green Version]
- Lavos-Valereto, I.C.; Wolynec, S.; Ramires, I.; Guastaldi, A.C.; Costa, I. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti-6Al-7Nb alloy in Hank’s solution. J. Mater. Sci. Mater. Med. 2004, 15, 55–59. [Google Scholar] [CrossRef]
- Osorio, W.S.R.; Goulart, P.R. Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys. Metall. Mater. Trans. 2006, 37, 2525–2538. [Google Scholar] [CrossRef]
- Giannotta, M.; Trani, M.; Dejana, E. VE-Cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Dev. Cell 2013, 26, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.I.; Fuchs, S.; Gomes, M.E.; Unger, R.E.; Reis, R.L.; Kirkpatrick, C.J. Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials 2007, 28, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Luo, R.; Wang, X.; Tang, L.L.; Wu, J.; Wang, J.; Huang, R.; Sun, H.; Huang, N. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell. Colloids Surf. B Biointerfaces 2014, 116, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Burstein, G.T.; Liu, C.; Souto, R.M. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution. Biomaterials 2005, 26, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Burstein, G.T.; Souto, R.M. Improvement in pitting resistance of stainless steel surfaces by prior anodic treatment in metasilicate solution. J. Electrochem. Soc. 2004, 151, B537–B542. [Google Scholar] [CrossRef]
- Neacsu, P.; Mazare, A.; Cimpean, A.; Park, J.; Costache, M.; Schmuki, P.; Demetrescu, I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int. J. Biochem. Cell Biol. 2014, 55, 187–195. [Google Scholar] [CrossRef] [PubMed]
Ions | ||||
O 1s | Ti 2p3/2 | Hf 4f7/2 | Mo 3d5/2 | Sn 3d5/2 |
Binding energies (eV)/Ions | ||||
530.5/O2− | 457.0/Ti3+ | 17.0/Hf4 | 228.1/Mo0 | 484.7/Sn0 |
531.9/OH ads | 458.9/Ti4+ | 228.8/Mo4+ | 486.7/Sn4+ |
Ions | |||
Ti | Hf | Mo | Sn |
Concentration (%)/Oxidation States | |||
21.3/Ti3+ | 100.0/Hf4+ | 8.4/Mo0 | 13.0/Sn0 |
78.7/Ti4+ | 91.6/Mo4+ | 87.0/Sn4+ |
Material | Ecorr (mV) | Ep (mV) | ΔEp (mV) | |Ecorr − Ep| (mV) | ip (µA/cm2) |
---|---|---|---|---|---|
CP-Ti | −470 | −150 | >1000 | 320 | 2.512 |
Ti-6Al-4V | −400 | −150 | >1000 | 250 | 1.995 |
Ti-23Hf-3Mo-4Sn | −300 | −100 | >1000 | 200 | 0.873 |
Material | icorr (µA/cm2) | Vcorr (µm/Y) | Ion Release (ng/cm2) | Resistance Class | Rp (kΩ·cm2) | βa (mV/dec) | βc (mV/dec) |
---|---|---|---|---|---|---|---|
CP-Ti | 0.552 | 5.051 | 513.18 | VS | 20.52 | 180 | −119 |
Ti-6Al-4V | 0.492 | 4.502 | 457.40 | VS | 30.75 | 189 | −118 |
Ti-23Hf-3Mo-4Sn | 0.061 | 0.649 | 65.93 | PS | 198.18 | 191 | −115 |
Material | Rs (Ω·cm2) | Rb (Ω·cm2) | CPEb (S·sncm−2) | n1 | Rp (Ω·cm2) | CPEp (S·sncm−2) | n2 |
---|---|---|---|---|---|---|---|
CP-Ti | 12.4 | 8.3 × 105 | 9.4 (±0.1) × 10−6 | 0.95 | 7.2 × 103 | 1.8 (±0.1) × 10−5 | 0.88 |
Ti-6Al-4V | 13.6 | 9.5 × 105 | 9.2 (±0.2) × 10−6 | 0.97 | 1.8 × 104 | 1.1 (±0.1) × 10−5 | 0.90 |
Ti-23Hf-3Mo-4Sn | 14.5 | 1.7 × 106 | 8.1 (±0.1) × 10−6 | 0.99 | 1.9 × 104 | 0.9 (±0.1) × 10−5 | 0.91 |
Ion | Simulated Body Fluid | Blood Plasma |
---|---|---|
Na+ | 142.0 | 142.0 |
K+ | 5.0 | 5.0 |
Mg2+ | 1.5 | 1.5 |
Ca2+ | 2.5 | 2.5 |
Cl− | 148.8 | 103.0 |
HCO3− | 4.2 | 27.0 |
HPO42− | 1.0 | 1.0 |
SO42− | 0.5 | 0.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion, R.; Drob, S.I.; Ijaz, M.F.; Vasilescu, C.; Osiceanu, P.; Gordin, D.; Cimpean, A.; Gloriant, T. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy. Materials 2016, 9, 818. https://doi.org/10.3390/ma9100818
Ion R, Drob SI, Ijaz MF, Vasilescu C, Osiceanu P, Gordin D, Cimpean A, Gloriant T. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy. Materials. 2016; 9(10):818. https://doi.org/10.3390/ma9100818
Chicago/Turabian StyleIon, Raluca, Silviu Iulian Drob, Muhammad Farzik Ijaz, Cora Vasilescu, Petre Osiceanu, Doina‐Margareta Gordin, Anisoara Cimpean, and Thierry Gloriant. 2016. "Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy" Materials 9, no. 10: 818. https://doi.org/10.3390/ma9100818
APA StyleIon, R., Drob, S. I., Ijaz, M. F., Vasilescu, C., Osiceanu, P., Gordin, D., Cimpean, A., & Gloriant, T. (2016). Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti‐Hf‐Mo‐Sn Alloy. Materials, 9(10), 818. https://doi.org/10.3390/ma9100818