First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene
Abstract
:1. Introduction
2. Theoretical Method
3. Results and Discussion
3.1. Adsorption and Diffusion of Ions on Pristine Graphene
System | Eb by Simplified Method (eV) | Eb by LST/QST (eV) | Error (%) |
---|---|---|---|
Gr-Li | 9.71 | 9.74 | 0.31 |
Gr-Na | 33.94 | 33.96 | 0.06 |
Gr-DV-Li | 1.49 | 1.54 | 3.25 |
Gr-DV-Na | 6.08 | 6.14 | 0.98 |
Gr-DV-2B(c)-Li | 2.25 | 2.36 | 4.66 |
Gr-DV-2B(c)-Na | 7.73 | 7.79 | 0.77 |
3.2. Adsorption and Diffusion of Ions on Defected Graphene
System | Li | Na | ||||
---|---|---|---|---|---|---|
Ead (eV) | d (Å) | Eb (eV) | Ead (eV) | d (Å) | Eb (eV) | |
Pristine graphene (H) | 0.49 | 1.71 | 9.71 | 0.61 | 2.30 | 33.94 |
Pristine graphene (T) | 0.83 | 1.94 | / | 0.70 | 2.50 | / |
Pristine graphene (M) | 0.81 | 1.94 | / | 0.69 | 2.50 | / |
Gr-SV | −1.12 | 1.74 | 6.50 | −0.58 | 2.07 | 17.97 |
Gr-DV | −0.59 | 1.31 | 1.49 | −0.53 | 1.90 | 6.08 |
Gr-SW | 0.17 | 1.60 | 5.04 | 0.27 | 2.10 | 17.36 |
3.3. Adsorption and Diffusion of Ions on B-doped Graphene
System | Li | Na | ||||
---|---|---|---|---|---|---|
Ead (eV) | d (Å) | Eb (eV) | Ead (eV) | d (Å) | Eb (eV) | |
Gr-1B | −0.95 | 1.70 | 8.80 | −0.74 | 2.20 | 31.37 |
Gr-SV-1B | −1.24 | 1.63 | 11.01 | −0.59 | 2.20 | 22.83 |
Gr-SV-2B | −0.35 | 1.92 | 14.43 | −0.47 | 2.30 | 25.32 |
Gr-SV-3B | −0.65 | 1.93 | 20.02 | −0.78 | 2.30 | 32.00 |
Gr-DV-1B | −1.24 | 1.36 | 1.95 | −1.11 | 1.90 | 6.92 |
Gr-DV-2B(a) | −1.08 | 1.37 | 2.27 | −0.90 | 1.91 | 7.73 |
Gr-DV-2B(b) | −1.25 | 1.41 | 2.41 | −1.10 | 1.91 | 7.81 |
Gr-DV-2B(c) | −1.52 | 1.37 | 2.25 | −1.29 | 1.90 | 7.73 |
Gr-DV-3B | −1.29 | 1.42 | 2.64 | −1.04 | 1.95 | 8.75 |
Gr-DV-4B | −1.27 | 1.41 | 2.86 | −1.01 | 1.97 | 9.45 |
3.4. Adsorption and Diffusion of Ions on B-doped Graphene with the Vacancy
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.J.; Chou, F.C. Sodium-ion diffusion and ordering in single-crystal P2-NaxCoO2. Phys. Rev. B 2008, 78. [Google Scholar] [CrossRef]
- Sauvage, F.; Laffont, L.; Tarascon, J.M.; Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Wang, X.; Tang, A.; Liu, Z.; Gamboa, S.; Sebastian, P.J. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698–703. [Google Scholar] [CrossRef]
- Zandbergen, H.W.; Foo, M.; Xu, Q.; Kumar, V.; Cava, R.J. Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef]
- Komaba, S.; Mikumo, T.; Yabuuchi, N.; Ogata, A.; Yoshida, H.; Yamada, Y. Electrochemical insertion of Li and Na ions into nanocrystallineFe3O4 and α-Fe2O3 for rechargeable batteries. J. Electrochem. Soc. 2010, 157, A60–A65. [Google Scholar] [CrossRef]
- Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 2010, 12, 355–358. [Google Scholar] [CrossRef]
- Whitacre, J.F.; Tevar, A.; Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 2010, 12, 463–466. [Google Scholar] [CrossRef]
- Plashnitsa, L.S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J.I. Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 2010, 157, A536–A543. [Google Scholar] [CrossRef]
- Zhao, J.; He, J.; Ding, X.; Zhou, J.; Ma, Y.; Wu, S.; Huang, R. A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 2010, 195, 6854–6859. [Google Scholar] [CrossRef]
- Asher, R.C. A lamellar compound of sodium and graphite. J. Inorg. Nucl. Chem. 1959, 10, 238–249. [Google Scholar] [CrossRef]
- Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State ion. 1988, 28–30, 1172–1175. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Medeiros, P.V.C.; Mota, F.B.; Mascarenhas, A.J.S.; Castilho, C.M.C. Adsorption of monovalent metal atoms on graphene: A theoretical approach. Nanotechnology 2010, 21. [Google Scholar] [CrossRef] [PubMed]
- Ataca, C.; Akturk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef] [Green Version]
- Stournara, M.E.; Shenoy, V.B. Enhanced Li capacity at high lithiation potentials in graphene oxide. J. Power Sources 2011, 196, 5697–5703. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Chou, S.L.; Liu, H.K.; Dou, S.X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.S.; Lee, K.T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energ. Environ. Sci. 2013, 6, 2067–2081. [Google Scholar] [CrossRef]
- Yang, S.; Gong, Y.; Liu, Z.; Zhan, L.; Hashim, D.P.; Ma, L.; Vajtai, R.; Ajayan, P.M. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 2013, 13, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.M. Doped graphene sheets as anode materials with super high rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Cui, Y.; Han, B. Graphene-based hybrid materials and their applications in energy storage and conversion. Chin. Sci. Bull. 2012, 57, 2983–2994. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Zhang, X.; Luo, B.; Jin, M.; Liang, M.; Dayeh, S.A.; Picraux, S.T.; Zhi, L. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H.; Nagoya, Y.; Fukuzumi, T. Density Functional Theory (DFT) study on the effects of Li+ doping on electronic states of graphene. J. Power Sources 2010, 195, 6148–6152. [Google Scholar] [CrossRef]
- Valencia, F.; Romero, A.H.; Anciloto, F.; Silvestrelli, P.L. Lithium adsorption on graphite from density functional theory calculations. J. Phys. Chem. B 2006, 110, 14832–14841. [Google Scholar] [CrossRef] [PubMed]
- Garay-Tapia, A.M.; Romero, A.H.; Barone, V. Lithium adsorptionon graphene: From isolated adatoms to metallic sheets. J. Chem. Theory Comput. 2012, 8, 1064–1071. [Google Scholar] [CrossRef]
- Meyer, J.C.; Kisielowski, C.; Erni, R.; Rossell, M.D.; Crommie, M.F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Brihuega, I.; Guinea, F.; Gomez-Rodriguez, J.M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 2010, 104. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Brihuega, I.; Hiebel, F.; Mallet, P.; Veuillen, J.Y.; Gomez-Rodriguez, J.M.; Yndurain, F. Electronic and structural characterization of divacancies in irradiated graphene. Phys. Rev. B 2012, 85. [Google Scholar] [CrossRef]
- Zheng, J.; Ren, Z.; Guo, P.; Fang, L.; Fan, J. Diffusion of Li+ ion on graphene: A DFT study. Appl. Surf. Sci. 2011, 258, 1651–1655. [Google Scholar] [CrossRef]
- Tachikawa, H. A direct molecular orbital-molecular dynamics study on the diffusion of the Li ion on a fluorinated graphene surface. J. Phys. Chem. C 2008, 112, 10193–10199. [Google Scholar] [CrossRef]
- Tachikawa, H.; Shimizu, A. Diffusion dynamics of the Li atom on amorphous carbon: A direct molecular orbital-molecular dynamics study. J. Phys. Chem. B 2006, 110, 20445–20450. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Gunes, F.; Ta, H.Q.; Lee, S.M.; Chae, S.J.; Sheem, K.Y.; Cojocaru, C.S.; Xie, S.S.; Lee, Y.H. Diffusion mechanism of lithium Ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134, 8646–8654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Zheng, W.T.; Kuo, J.L. Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl. Mater. Interfaces 2012, 4, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Hou, Z.F.; Wu, L.M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787. [Google Scholar] [CrossRef]
- Liu, Y.; Artyukhov, V.I.; Liu, M.; Harutyunyan, A.R.; Yakobson, B.I. Feasibility of lithium storage on graphene and its derivatives. J. Phys. Chem. Lett. 2013, 4, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Li, J.; Shenoy, V.B. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Medina, J.; López-Urías, F.; Terrones, H.; Rodríguez-Macías, F.J.; Endo, M.; Terrones, M. Differential response of doped/defective graphene and dopamine to electric fields: A density functional theory study. J. Phys. Chem. C 2015, 119, 13972–13978. [Google Scholar] [CrossRef]
- Lee, G.; Kim, K.S.; Cho, K. Theoretical study of the electron transport in graphene with vacancy and residual oxygen defects after high-temperature reduction. J. Phys. Chem. C 2011, 115, 9719–9725. [Google Scholar] [CrossRef]
- Liao, T.; Sun, C.H.; Du, A.; Sun, Z.Q.; Hulicova-Jurcakova, D.; Smith, S. Charge carrier exchange at chemically modified graphene edges: A density functional theory study. J. Mater. Chem. 2012, 22, 8321–8326. [Google Scholar] [CrossRef]
- Liao, T.; Sun, C.H.; Sun, Z.Q.; Du, A.J.; Hulicova-Jurcakova, D.; Smith, S. How to achieve maximum charge carrier loading on heteroatom-substituted graphene nanoribbon edges: Density functional theory study. J. Mater. Chem. 2012, 22, 13751–13755. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, 864–871. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258. [Google Scholar] [CrossRef]
- Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I.I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.M.; Scheffler, M. Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef]
- Reich, S.; Li, L.; Robertson, J. Structure and formation energy of carbon nanotube caps. Phys. Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Graphene: A two-dimensional platform for lithium storage. Small 2013, 9, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chan, G.; Choi, J.W.; Ryu, I.; Yao, Y.; McDowell, M.T.; Lee, S.W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Mizuno, F. Boron-doped graphene as a promising anode for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 10419–10424. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Shao, X.; Cao, D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 2012, 22, 8911–8915. [Google Scholar] [CrossRef]
- Panchakarla, L.S.; Subrahmanyam, K.S.; Saha, S.K.; Govindaraj, A.; Krishnamurthy, H.R.; Waghmare, U.V.; Rao, C.N.R. Synthesis, structure and properties of boron and nitrogen doped graphene. Adv. Mater. 2009, 21, 4726–4730. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Wang, H. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene. Materials 2015, 8, 6163-6178. https://doi.org/10.3390/ma8095297
Wan W, Wang H. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene. Materials. 2015; 8(9):6163-6178. https://doi.org/10.3390/ma8095297
Chicago/Turabian StyleWan, Wei, and Haidong Wang. 2015. "First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene" Materials 8, no. 9: 6163-6178. https://doi.org/10.3390/ma8095297
APA StyleWan, W., & Wang, H. (2015). First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene. Materials, 8(9), 6163-6178. https://doi.org/10.3390/ma8095297