Next Article in Journal
Prosthetic Meshes for Repair of Hernia and Pelvic Organ Prolapse: Comparison of Biomechanical Properties
Previous Article in Journal
Investigation of the High Mobility IGZO Thin Films by Using Co-Sputtering Method
Article Menu

Export Article

Open AccessArticle
Materials 2015, 8(5), 2782-2793;

Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA
School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
Author to whom correspondence should be addressed.
Academic Editor: Jung Ho Je
Received: 1 April 2015 / Accepted: 18 May 2015 / Published: 22 May 2015
(This article belongs to the Section Structure Analysis and Characterization)
Full-Text   |   PDF [4681 KB, uploaded 22 May 2015]   |  


Analysis of the induced stress on undoped and boron-doped diamond (BDD) thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate. View Full-Text
Keywords: confocal Raman mapping; induced stress; boron-doped diamond confocal Raman mapping; induced stress; boron-doped diamond

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Bennet, K.E.; Lee, K.H.; Tomshine, J.R.; Sundin, E.M.; Kruchowski, J.N.; Durrer, W.G.; Manciu, B.M.; Kouzani, A.; Manciu, F.S. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond. Materials 2015, 8, 2782-2793.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top