Next Article in Journal / Special Issue
A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development
Previous Article in Journal
Titania Nanotubes Grown on Carbon Fibers for Photocatalytic Decomposition of Gas-Phase Aromatic Pollutants
Previous Article in Special Issue
Uptake of Eudragit Retard L (Eudragit® RL) Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats
Open AccessArticle

Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

1
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
2
Institute of Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
3
Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
*
Author to whom correspondence should be addressed.
Materials 2014, 7(3), 1814-1829; https://doi.org/10.3390/ma7031814
Received: 27 November 2013 / Revised: 9 February 2014 / Accepted: 19 February 2014 / Published: 4 March 2014
(This article belongs to the Special Issue Nanocomposites of Polymers and Inorganic Particles 2013)
This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings. View Full-Text
Keywords: electrophoretic deposition; nanocomposites; chitosan; TiO2 electrophoretic deposition; nanocomposites; chitosan; TiO2
MDPI and ACS Style

Raddaha, N.S.; Cordero-Arias, L.; Cabanas-Polo, S.; Virtanen, S.; Roether, J.A.; Boccaccini, A.R. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates. Materials 2014, 7, 1814-1829.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop