Morphological Change of Heat Treated Bovine Bone: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Section
4. Results and Discussion
4.1. TGA
4.2. XRD
4.3. SEM
4.4. EDAX
4.5. Density and Porosity
Heat treatment of sample | Bulk Density ± SD (g/cc) | Open porosity ± SD (%) |
---|---|---|
As received | 1.984 ± 0.009 | 2.278 ± 0.766 |
120 °C | 2.016 ± 0.053 | 2.309 ± 0.046 |
350 °C | 1.507 ± 0.060 | 15.724 ± 2.918 |
500 °C | 1.201 ± 0.138 | 33.023 ± 0.453 |
750 °C | 1.501 ± 0.002 | 2.039 ± 0.878 |
900 °C | 1.353 ± 0.029 | 10.275 ± 1.451 |
5. Conclusions
Acknowledgments
References
- Lin, F.-H.; Liao, C.-J.; Chen, K.-S.; Sun, J.-S. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7.10H2O addition. Biomaterials 1999, 20, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int. 2007, 33, 1171–1177. [Google Scholar] [CrossRef]
- Oonishi, H.; Hench, L.L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Kushitani, S.; Iwaki, H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res. 1999, 44, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mccrate, J.M.; Lee, J.C.-M.; Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 2011, 22, 105708:1–105708:10. [Google Scholar]
- Pramanik, S.; Agarwal, A.K.; Rai, K.N.; Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33, 419–426. [Google Scholar] [CrossRef]
- Oonishi, H. Orthopaedicapplications of hydroxyapatite. Biomaterials 1991, 12, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749–4757. [Google Scholar] [CrossRef] [PubMed]
- Laschke, M.W.; Strohe, A.; Menger, M.D.; Alini, M.; Eglin, D. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater. 2010, 6, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, Y.; Ikoma, T.; Tanaka, J.; Hoshi, K.; Ishihara, T.; Ogawa, Y.; Ueno, A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J. Control. Release 2006, 110, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, W.; Wang, D.; Darvell, B.W.; Day, D.E.; Rahaman, M.N. Preparation of hollow hydroxyapatite microspheres. J. Mater. Sci. Mater. Med. 2006, 17, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Rosaa, A.L.; Beloti, M.M.; Noort, R.-V. Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography. Dent. Mater. 2003, 19, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S. Syntheses and Characterizations of Nano-Hydroxyapatite, Functional Polyetheretherketone, Carbon Nanofibers and Their Nanocomposites for Biomedical Applications: High Strength and Biocompatible. Ph.D. Thesis, Indian Institute of Technology Kanpur, India, June 2011. [Google Scholar]
- Pramanik, S.; Kar, K.K. Nanohydroxyapatite synthesized from calcium oxide and its characterization. Int. J. Adv. Manuf. Technol. 2012. [Google Scholar] [CrossRef]
- Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Kar, K.K.; Pramanik, S. Hydroxyapatite-poly(etheretherketone) Nanocomposites and Method of Manufacturing Same. U.S. Patent 2012/0107612 A1, 3 May 2012. [Google Scholar]
- Pramanik, S.; Kar, K.K. Synthesis and characterizations of hydroxyapatite-poly(ether ether ketone) nanocomposite: Acellular simulated body fluid conditioned study. In IFMBE Proceedings, Proceedings of 13th International Conference on Biomedical Engineering, Singapore, 3–6 December 2008; Lim, C.T., Goh, J.C.H., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2009; Volume 23, pp. 1309–1312. [Google Scholar]
- Roy, D.M.; Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.F.; Zahid, M.A.; Awang, S.A.; Zakaria, Z.; Abdullah, A.A. Synthesis and characterization of bioceramic from Malaysian cockle shell. In Proceedings of 2010 IEEE Symposium on Industrial Electronics & Applications (ISIEA), Penang, Malaysia, 3–5 October 2010.
- Sanosh, K.P.; Chu, M.-C.; Balakrishnan, A.; Kim, T.N.; Cho, S.-J. Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Mater. Lett. 2009, 63, 2100–2102. [Google Scholar] [CrossRef]
- Salama, R. Xenogeneic bone grafting in humans. Clin. Orthop. Relat. Res. 1983, 174, 113–121. [Google Scholar] [PubMed]
- Taschieri, S.; Del Fabbro, M.; Testori, T.; Weinstein, R. Efficacy of xenogeneic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics. J. Oral Maxillofac Surg. 2007, 65, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Seo, D.S.; Lee, J.K. Fabrication of xenogeneicbone-derived hydroxyapatite thin film by aerosol deposition method. Appl. Surf. Sci. 2008, 255, 388–390. [Google Scholar] [CrossRef]
- Kikuchi, M.; Itoh, S.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Self-organization mechanism in a bone-likehydroxyapatite/collagen nanocomposite synthesized in vitro and its biologicalreaction in vivo. Biomaterials 2001, 22, 1705–1711. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Lemos, A.; Soundrapandian, C.; Sen, P.S.; Datta, S.; Ferreira, J.M.F.; Basu, D. Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J. Mater. Sci. Mater. Med. 2010, 21, 2955–2969. [Google Scholar] [CrossRef] [PubMed]
- Mastrogiacomo, M.; Scaglione, S.; Martinetti, R.; Dolcini, L.; Beltrame, F.; Cancedda, R.; Quarto, R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006, 27, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Weibel, A.; Bouchet, R.; Boulch, F.; Knauth, P. The big problem of small particles: A comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem. Mater. 2005, 17, 2378–2385. [Google Scholar] [CrossRef]
- Leaver, A.G.; Shuttleworth, C.A. Fractionation of the acid-soluble nitrogen of bone and dentine. Arch. Oral Biol. 1967, 12, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Kar, K.K. Functionalized poly(ether ether ketone): Improved mechanical property and acellular bioactivity. J. Appl. Polym. Sci. 2012, 123, 1100–1111. [Google Scholar] [CrossRef]
- Gupta, T.K.; Coble, R.L. Sintering of ZnO: I, Densification and grain growth. J. Amer. Ceram. Soc. 1968, 51, 521–525. [Google Scholar] [CrossRef]
- Pramanik, S.; Pingguan-Murphy, B.; Abu Osman, N.A. Progress of key strategies in development of electrospun scaffolds: Bone tissue. Sci. Technol. Adv. Mater. 2012, 13. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pramanik, S.; Hanif, A.S.M.; Pingguan-Murphy, B.; Abu Osman, N.A. Morphological Change of Heat Treated Bovine Bone: A Comparative Study. Materials 2013, 6, 65-75. https://doi.org/10.3390/ma6010065
Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA. Morphological Change of Heat Treated Bovine Bone: A Comparative Study. Materials. 2013; 6(1):65-75. https://doi.org/10.3390/ma6010065
Chicago/Turabian StylePramanik, Sumit, Asyikin Sasha Mohd Hanif, Belinda Pingguan-Murphy, and Noor Azuan Abu Osman. 2013. "Morphological Change of Heat Treated Bovine Bone: A Comparative Study" Materials 6, no. 1: 65-75. https://doi.org/10.3390/ma6010065
APA StylePramanik, S., Hanif, A. S. M., Pingguan-Murphy, B., & Abu Osman, N. A. (2013). Morphological Change of Heat Treated Bovine Bone: A Comparative Study. Materials, 6(1), 65-75. https://doi.org/10.3390/ma6010065