In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science
Abstract
:1. Introduction
2. Review
2.1. Physical Principle of In-Line Phase-Contrast Imaging
2.2. Phase-Retrieval for Quantitative Phase-Contrast Imaging
2.3. Synchrotron In-Line Phase-Contrast for Materials Characterization
2.3.1. Cracks/Defect Initiation in Various Materials
2.3.2. Low Density Materials and Low-Contrast Boundaries
2.3.3. Porous Materials
2.3.4. Natural Materials
2.4. Laboratory-based In-Line Phase-Contrast for Materials Characterization
3. Applications of In-Line Phase-Contrast Imaging—A Selection of Materials Science Case Studies
3.1. In-Line Phase-Contrast Imaging with a Micro-Focus Source
3.1.2. PCX—Two-Dimensional Imaging
3.1.3. PCX—Three-Dimensional Imaging (Micro-Tomography)
3.2. Higher-Resolution X-Ray Microscopy and Micro-CT Using the XuM
3.2.1. Crack in Carbon Coating on Multi-Layer Coated Zirconia Sphere
3.2.2. Fibrous Tissue Scaffolds—3D Characterization of Almost X-ray Transparent Materials
3.2.3. Self Healing Polymers—The Complementary Nature of Phase and Absorption Contrast
4. Conclusions and Future Directions
Acknowledgements
References and Notes
- Hounsfield, G.N. Computerized transverse axial scanning (tomography) 1. Description of system. Br. J. Radiol. 1973, 46, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, J.; Hounsfield, G.N. Compuertized transverse axial tomography. Br. J. Radiol. 1973, 46, 148–149. [Google Scholar] [CrossRef] [PubMed]
- Kujoory, M.A.; Hillman, B.J.; Barrett, H.H. High-Resolution computed-tomography of the normal rat nephrogram. Invest. Radiol. 1980, 15, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.C.; Dover, S.D. X-ray microtomography. J. Microsc. 1982, 126, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.C.; Dover, S.D. X-ray microscopy using computerized axial-tomography. J. Microsc. 1985, 138, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Sasov, A.; van Dyck, D. Desktop X-ray microscopy and microtomography. J. Microsc. 1998, 191, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.C.; Bowen, D.K.; Dover, S.D.; Davies, S.T. X-ray microtomography of biological tissues using laboratory and synchrotron sources. Biol. Tr. Elem. Res. 1987, 13, 219–227. [Google Scholar] [CrossRef]
- Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 2009, 30, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Maire, E.; Buffiere, J.Y.; Salvo, L.; Blandin, J.J.; Ludwig, W.; Letang, J.M. On the application of X-ray microtomography in the field of materials science. Adv. Eng. Mater. 2001, 3, 539–546. [Google Scholar] [CrossRef]
- Stock, S.R. X-ray microtomography of materials. Int. Mater. Rev. 1999, 44, 141–164. [Google Scholar] [CrossRef]
- Van Geet, M.; Swennen, R.; Wevers, M. Towards 3-D petrography: Application of microfocus computer tomography in geological science. Comput. Geosci. 2001, 27, 1091–1099. [Google Scholar] [CrossRef]
- Stock, S.R. Recent advances in X-ray microtomography applied to materials. Int. Mater. Rev. 2008, 53, 129–181. [Google Scholar] [CrossRef]
- Feser, M.; Gelb, J.; Chang, H.; Cui, H.; Duewer, F.; Lau, S.H.; Tkachuk, A.; Yun, W. Sub-micron resolution CT for failure analysis and process development. Meas. Sci. Technol. 2008, 19, 8. [Google Scholar] [CrossRef]
- Sasov, A.; Ceulemans, T.; van Dyck, D. Desk-top X-ray microtomography. In Metrology-based Control for Micro-Manufacturing; Tobin, K.W., Lakhani, F., Eds.; SPIE—International Society Optical Engineering: Bellingham, WA, USA, 2001; Volume 4275, pp. 147–154. [Google Scholar]
- Ando, M.; Hoyosa, S. Attempt at X-ray phase-contrast microscopy. In Proceedings of the 6th International Conference of X-ray Optics and Microanalysis; Shinoda, G., Kohra, K., Ichinokawa, T., Eds.; University of Tokyo Press: Tokyo, Japan, 1972; pp. 63–68. [Google Scholar]
- Bonse, U.; Hart, M. An X-ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Momose, A.; Takeda, T.; Itai, Y. Phase-contrast X-ray computed-tomography for observing biological specimens and organic materials. In Proceeddings of 5th International Conference on Synchrotron Radiation Instrumentation, Stony Brook, NY, USA, 18–22 July 1994; pp. 1434–1436.
- Forster, E.; Goetz, K.; Zaumseil, P. Double crystal diffractometry for the characterization of targets for laser fusion experiments. Kristall Technik 1980, 15, 937–945. [Google Scholar] [CrossRef]
- Goetz, K.; Kalashnikov, M.P.; Mikhailov, Y.A.; Sklizkov, G.V.; Fedetov, S.I.; Foerster, E.; Zaumseil, P. Measurements of the parameters of shell targets for laser thermonuclear fusion using an X-ray schlieren method. Sov. J. Quantum Electr. 1978, 9, 607–610. [Google Scholar] [CrossRef]
- Tkachuk, A.; Duewer, F.; Cui, H.; Feser, M.; Wang, S.; Yun, W. X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source. Z. Kristallogr. 2007, 222, 650–655. [Google Scholar] [CrossRef]
- Izzo, J.R.; Joshi, A.S.; Grew, K.N.; Chiu, W.K.S.; Tkachuk, A.; Wang, S.H.; Yun, W. Nondestructive reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 nm resolution. J. Electrochem. Soc. 2008, 155, B504–B508. [Google Scholar] [CrossRef]
- Kohmura, Y.; Takeuchi, A.; Takano, H.; Suzuki, Y.; Ishikawa, T. Zernike phase-contrast X-ray microscope with an X-ray refractive lens. J. Phys. IV 2003, 104, 603–606. [Google Scholar]
- Schmahl, G.; Rudolph, D.; Schneider, G.; Guttmann, P.; Niemann, B. Phase-contrast X-ray Microscopy Studies. Optik 1994, 97, 181–182. [Google Scholar]
- Palmer, J.R.; Morrison, G.R. Differential phase-contrast imaging in the scanning-transmission X-ray microscope. In OSA Proceedings on Short-Wavelength Coherent Radiation: Generation and Applications; Bucksbaum, P.H., Ceglio, N.M., Eds.; Optical Society of America: Washington, DC, USA, 1991; Volume 11, pp. 141–145. [Google Scholar]
- Feser, M.; Jacobsen, C.; Rehak, P.; DeGeronimo, G. Scanning transmission X-ray microscopy with a segmented detector. J. Phys. IV 2003, 104, 529–534. [Google Scholar]
- Chapman, H.N.; Jacobsen, C.; Williams, S. Applications of a CCD detector in scanning-transmission X-ray microscope. Rev. Sci. Instrum. 1995, 66, 1332–1334. [Google Scholar] [CrossRef]
- Momose, A. Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express 2003, 11, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef] [PubMed]
- David, C.; Nohammer, B.; Solak, H.H.; Ziegler, E. Differential X-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Miao, J.W.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Putkunz, C.T.; Clark, J.N.; Vine, D.J.; Williams, G.J.; Pfeifer, M.A.; Balaur, E.; McNulty, I.; Nugent, K.A.; Peele, A.G. Phase-diverse coherent diffractive imaging: High sensitivity with low dose. Phys. Rev. Lett. 2011, 106, 013903:1–013903:4. [Google Scholar] [CrossRef]
- Pfeiffer, M.A.; Williams, G.J.; Vartanyants, I.A.; Harder, R.; Robinson, I.K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006, 442, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Kagoshima, Y.; Ibuki, T.; Yokoyama, Y.; Tsusaka, Y.; Matsui, J.; Takai, K.; Aino, M. 10 keV X-ray phase-contrast microscopy for observing transparent specimens. Jpn. J. Appl. Phys. Pt. 2 2001, 40, L1190–L1192. [Google Scholar] [CrossRef]
- Kuwabara, H.; Yashiro, W.; Harasse, S.; Mizutani, H.; Momose, A. Hard-X-ray phase-difference microscopy with a low-brilliance laboratory X-ray source. Appl. Phys. Express 2011, 4, 062502:1–062502:3. [Google Scholar] [CrossRef]
- Li, W.; Wang, N.; Chen, J.; Liu, G.; Pan, Z.; Guan, Y.; Yang, Y.; Wu, W.; Tian, J.; Wei, S.; et al. Quantitative study of interior nanostructure in hollow zinc oxide particles on the basis of nondestructive X-ray nanotomography. Appl. Phys. Lett. 2009, 95, 053108:1–053108:3. [Google Scholar]
- Takeya, S.; Yoneyama, A.; Miyamoto, J.; Gotoh, Y.; Ueda, K.; Hyodo, K.; Takeda, T. Phase-contrast X-ray imaging of the gas diffusion layer of fuel cells. J. Synchrotron. Radiat. 2010, 17, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bunk, O.; Kottler, C.; David, C. Tomographic reconstruction of three-dimensional objects from hard X-ray differential phase contrast projection images. Nucl. Instrum. Meth. Phys. Res. 2007, 580, 925–928. [Google Scholar] [CrossRef]
- Muller, B.R.; Lange, A.; Harwardt, M.; Hentschel, M.P. Synchrotron-based micro-CT and refraction-enhanced micro-CT for non-destructive materials characterisation. Adv. Eng. Mater. 2009, 11, 435–440. [Google Scholar] [CrossRef]
- Maksimenko, A.; Ando, M.; Sugiyama, H.; Hashimoto, E. Possibility of computed tomographic reconstruction of cracks from X-ray refraction contrast. Jpn. J. Appl. Phys. Pt. 2 2005, 44, L633–L635. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C.; Howells, M.; Kirz, J.; Rothman, S. X-ray holographic microscopy using photoresists. J. Opt. Soc. Am. A 1990, 7, 1847–1861. [Google Scholar] [CrossRef]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Wilkins, S.W. Simplified conditions and configurations for phase-contrast imaging with hard X-rays. PCT/AU96/00178, 1995. [Google Scholar]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Cloetens, P.; Barrett, R.; Baruchel, J.; Guigay, J.P.; Schlenker, M. Phase objects in synchrotron radiation hard X-ray imaging. J. Phys. D 1996, 29, 133–146. [Google Scholar] [CrossRef]
- Cloetens, P.; PateyronSalome, M.; Buffiere, J.Y.; Peix, G.; Baruchel, J.; Peyrin, F.; Schlenker, M. Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 1997, 81, 5878–5886. [Google Scholar] [CrossRef]
- Wilkins, S.W.; Gao, D.; Gureyev, T.; Pogany, A.; Stevenson, A.W. X-ray phase-contrast radiography. Radiology 1997, 205, 907–907. [Google Scholar]
- Peele, A.G.; De Carlo, F.; McMahon, P.J.; Dhal, B.B.; Nugent, K.A. X-ray phase contrast tomography with a bending magnet source. Rev. Sci. Instrum. 2005, 76, 083707:1–083707:5. [Google Scholar] [CrossRef]
- Weitkamp, T.; Raven, C.; Snigirev, A. An imaging and microtomography facility at the ESRF beamline ID 22. In Developments in X-Ray Tomography Ii; Bonse, U., Ed.; SPEI—International Society Optical Engineering: Bellingham, WA, USA, 1999; Volume 3772, pp. 311–317. [Google Scholar]
- Djukic, L.P.; Herszberg, I.; Schoeppner, G.A.; Brownlow, L.A. Tow Visualisation in Woven Composites using X-ray Computed Tomography. In Recent Advances in Textile Composites; Advani, S.G., Gillespie, J.W., Eds.; DEStech Publications: Lancaster, PA, USA, 2008. [Google Scholar]
- Zoofan, B.; Kim, J.Y.; Rokhlin, S.I.; Frankel, G.S. Phase-contrast X-ray imaging for nondestructive evaluation of materials. J. Appl.Phys. 2006, 100, 014502:1–014502:7. [Google Scholar] [CrossRef]
- Mayo, S.C.; Miller, P.R.; Wilkins, S.W.; Davis, T.J.; Gao, D.; Gureyev, T.E.; Paganin, D.; Parry, D.J.; Pogany, A.; Stevenson, A.W. Quantitative X-ray projection microscopy: Phase-contrast and multi-spectral imaging. J. Microsc. 2002, 207, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Shoutsu, D.; Horikoshi, T.; Chiba, H.; Kumagai, S.; Takahashi, K.; Mitsui, T. Application of SEM-modified X-ray microscope to entomology and histology, and effects of X-ray coherence in imaging. J. Electron. Microsc. 2000, 49, 621–628. [Google Scholar] [CrossRef]
- Attwood, D. Soft X-Rays & Extreme Ultraviolet Radiation: Principles and Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Pogany, A.; Gao, D.; Wilkins, S.W. Contrast and resolution in imaging with a microfocus X-ray source. Rev. Sci. Instrum. 1997, 68, 2774–2782. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Raven, C.; Snigirev, A.; Snigireva, I.; Wilkins, S.W. Hard X-ray quantitative non-interferometric phase-contrast microscopy. J. Phys. D 1999, 32, 563–567. [Google Scholar] [CrossRef]
- Nugent, K.A.; Gureyev, T.E.; Cookson, D.F.; Paganin, D.; Barnea, Z. Quantitative phase imaging using hard x rays. Phys. Rev. Lett. 1996, 77, 2961–2964. [Google Scholar] [CrossRef] [PubMed]
- Bronnikov, A.V. Reconstruction formulas in phase-contrast tomography. Opt. Commun. 1999, 171, 239–244. [Google Scholar] [CrossRef]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Groso, A.; Abela, R.; Stampanoni, M. Implementation of a fast method for high resolution phase contrast tomography. Opt. Express 2006, 14, 8103–8110. [Google Scholar] [CrossRef] [PubMed]
- De Witte, Y.; Boone, M.; Vlassenbroeck, J.; Dierick, M.; Van Hoorebeke, L. Bronnikov-aided correction for X-ray computed tomography. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2009, 26, 890–894. [Google Scholar] [CrossRef] [PubMed]
- Cloetens, P.; Ludwig, W.; Baruchel, J.; Van Dyck, D.; Van Landuyt, J.; Guigay, J.P.; Schlenker, M. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 1999, 75, 2912–2914. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Mayo, S.; Wilkins, S.W.; Paganin, D.; Stevenson, A.W. Quantitative in-line phase-contrast imaging with multienergy x rays. Phys. Rev. Lett. 2001, 86, 5827–5830. [Google Scholar] [CrossRef] [PubMed]
- Gureyev, T.E.; Nesterets, Y.I.; Stevenson, A.W.; Miller, P.R.; Pogany, A.; Wilkins, S.W. Some simple rules for contrast, signal-to-noise and resolution in in-line X-ray phase-contrast imaging. Opt. Express 2008, 16, 3223–3241. [Google Scholar] [CrossRef] [PubMed]
- Gureyev, T.E.; Mayo, S.C.; Myers, D.E.; Nesterets, Y.; Paganin, D.M.; Pogany, A.; Stevenson, A.W.; Wilkins, S.W. Refracting Rontgen’s rays: Propagation-based X-ray phase contrast for biomedical imaging. J. Appl. Phys. 2009, 105, 102005:1–102005:12. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any X-ray imaging system. Phys. Med.Biol. 2006, 51, 3015–3030. [Google Scholar] [CrossRef] [PubMed]
- Zabler, S.; Cloetens, P.; Guigay, J.P.; Baruchel, J.; Schlenker, M. Optimization of phase contrast imaging using hard x rays. Rev. Sci. Instrum. 2005, 76, 073705:1–073705:7. [Google Scholar] [CrossRef]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskii, V.I. Principles of Statistical Radiophysics, Vol. 4: Wave Propagation through Random Media; Springer-Verlag: Berlin, German, 1989. [Google Scholar]
- Teague, M.R. Deterministic phase retrieval—A green-function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Stevenson, A.W.; Paganin, D.; Mayo, S.C.; Pogany, A.; Gao, D.; Wilkins, S.W. Quantitative methods in phase-contrast X-ray imaging. J. Digit. Imaging 2000, 13, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, T.; Haas, D.; Wegrzynek, D.; Rack, A. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron. Radiat. 2011, 18, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Z.; Liu, H. X-Ray cone-beam phase tomography formulas based on phase-attenuation duality. Opt. Express 2005, 13, 6000–6014. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Rigon, L.; Longo, R. Quantitative 3D refractive index decrement reconstruction using single-distance phase-contrast tomography data. J. Phys. D Appl. Phys. 2011, 44, 9. [Google Scholar]
- Chen, R.C.; Xie, H.L.; Rigon, L.; Longo, R.; Castelli, E.; Xiao, T.Q. Phase retrieval in quantitative X-ray microtomography with a single sample-to-detector distance. Opt. Lett. 2011, 36, 1719–1721. [Google Scholar] [CrossRef] [PubMed]
- Burvall, A.; Lundstrom, U.; Takman, P.A.C.; Larsson, D.H.; Hertz, H.M. Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Opt. Express 2011, 19, 10359–10376. [Google Scholar] [CrossRef] [PubMed]
- Beltran, M.A.; Paganin, D.M.; Uesugi, K.; Kitchen, M.J. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. Opt. Express 2010, 18, 6423–6436. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.R.; Gureyev, T.E.; Paganin, D.M.; Mayo, S.C. The binary dissector: Phase contrast tomography of two- and three-material objects from few projections. Opt. Express 2008, 16, 10736–10749. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.R.; Paganin, D.M.; Gureyev, T.E.; Mayo, S.C. Phase-contrast tomography of single-material objects from few projections. Opt. Express 2008, 16, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Arhatari, B.D.; Hannah, K.; Balaur, E.; Peele, A.G. Phase imaging using a polychromatic X-ray laboratory source. Opt. Express 2008, 16, 19950–19956. [Google Scholar] [CrossRef] [PubMed]
- Gureyev, T.E.; Paganin, D.M.; Stevenson, A.W.; Mayo, S.C.; Wilkins, S.W. Generalized eikonal of partially coherent beams and its use in quantitative imaging. Phys. Rev. Lett. 2004, 93, 068103:1–068103:4. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Davis, T.J.; Pogany, A.; Mayo, S.C.; Wilkins, S.W. Optical phase retrieval by use of first Born-and Rytov-type approximations. Appl. Opt. 2004, 43, 2418–2430. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, R.; Moosmann, J.; Baumbach, T. Criticality in single-distance phase retrieval. Opt. Express 2011, 19, 25881–25890. [Google Scholar] [CrossRef]
- Turner, L.D.; Dhal, B.B.; Hayes, J.P.; Mancuso, A.P.; Nugent, K.A.; Paterson, D.; Scholten, R.E.; Tran, C.Q.; Peele, A.G. X-ray phase imaging: Demonstration of extended conditions with homogeneous objects. Opt. Express 2004, 12, 2960–2965. [Google Scholar] [CrossRef] [PubMed]
- Buffiere, J.Y.; Maire, E.; Cloetens, P.; Lormand, G.; Fougeres, R. Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater. 1999, 47, 1613–1625. [Google Scholar] [CrossRef]
- Buffiere, J.Y.; Maire, E.; Verdu, C.; Cloetens, P.; Pateyron, M.; Peix, G.; Baruchel, J. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater. Sci. Eng. A-Struct. Mater. 1997, 234, 633–635. [Google Scholar] [CrossRef]
- Buffiere, J.Y.; Savelli, S.; Maire, E. Characterisation of MMCp and Cast Aluminium Alloys; Hermes Science Publications: Paris, France, 2000; pp. 103–113. [Google Scholar]
- Kohn, V.G.; Argunova, T.S.; Je, J.H. Study of micropipe structure in SiC by X-ray phase contrast imaging. Appl. Phys. Lett. 2007, 91, 171901:1–171901:3. [Google Scholar] [CrossRef]
- Argunova, T.S.; Gutkin, M.Y.; Je, J.H.; Mokhov, E.N.; Nagalyuk, S.S.; Hwu, Y. SR phase contrast imaging to address the evolution of defects during SiC growth. Phys. Status Solid. A Appl. Mat. 2011, 208, 819–824. [Google Scholar] [CrossRef]
- Velhinho, A.; Sequeira, P.D.; Martins, R.; Vignoles, G.; Fernandes, F.B.; Botas, J.D.; Rocha, L.A. Evaluation of Al/SiC wetting characteristics in functionally graded metal-matrix composites by synchrotron radiation microtomography. Mater. Sci. Forum 2003, 423–425, 263–268. [Google Scholar] [CrossRef]
- Ignatiev, K.I.; Lee, W.K.; Fezzaa, K.; Stock, S.R. Phase contrast stereometry: Fatigue crack mapping in three dimensions. Philos. Mag. 2005, 85, 3273–3300. [Google Scholar] [CrossRef]
- Herbig, M.; King, A.; Reischig, P.; Proudhon, H.; Lauridsen, E.M.; Marrow, J.; Buffiere, J.-Y.; Ludwig, W. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Mater. 2011, 59, 590–601. [Google Scholar] [CrossRef]
- Birosca, S.; Buffiere, J.Y.; Garcia-Pastor, F.A.; Karadge, M.; Babout, L.; Preuss, M. Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Mater. 2009, 57, 5834–5847. [Google Scholar] [CrossRef]
- Toda, H.; Sinclair, I.; Buffiere, J.Y.; Maire, E.; Connolley, T.; Joyce, M.; Khor, K.H.; Gregson, P. Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography. Philos. Mag. 2003, 83, 2429–2448. [Google Scholar] [CrossRef]
- Toda, H.; Sinclair, I.; Buffiere, J.Y.; Maire, E.; Khor, K.H.; Gregson, P.; Kobayashi, T. A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater. 2004, 52, 1305–1317. [Google Scholar] [CrossRef]
- Yamamoto, S.; Toda, H.; Qian, L.; Ohgaki, T.; Kobayashi, M.; Kobayashi, T.; Uesugi, K. Assessment of damage and fracture behaviors in a cast aluminum alloy via in-situ synchrotron microtomography. Mater. Sci. Forum 2006, 519–521, 1005–1010. [Google Scholar] [CrossRef]
- Kobayashi, T.; Toda, H. Strength and fracture of aluminium alloys. Mater. Sci. Forum 2007, 539–543, 127–134. [Google Scholar] [CrossRef]
- Toda, H.; Ohgaki, T.; Uesugi, K.; Kobayashi, M.; Kuroda, N.; Kobayashi, T.; Niinomi, M.; Akahori, T.; Makii, K.; Aruga, Y. Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography. Metall. Mater. Trans. A 2006, 37A, 1211–1219. [Google Scholar] [CrossRef]
- Toda, H.; Ohgaki, T.; Uesugi, K.; Makii, K.; Aruga, Y.; Toshikazu, A.; Niinomi, M.; Kobayashi, T. In-situ observation of fracture of aluminium foam using synchrotron X-ray microtomography. Key Eng. Mater. 2005, 297–300, 1189–1195. [Google Scholar] [CrossRef]
- Hu, Z.W.; De Carlo, F. Noninvasive three-dimensional visualization of defects and crack propagation in layered foam structures by phase-contrast microimaging. Scripta Mater. 2008, 59, 1127–1130. [Google Scholar] [CrossRef]
- Sinnett-Jones, P.E.; Browne, M.; Ludwig, W.; Buffiere, J.Y.; Sinclair, I. Microtomography assessment of failure in acrylic bone cement. Biomaterials 2005, 26, 6460–6466. [Google Scholar] [CrossRef] [PubMed]
- Marinoni, N.; Voltolini, M.; Mancini, L.; Vignola, P.; Pagani, A.; Pavese, A. An investigation of mortars affected by alkali-silica reaction by X-ray synchrotron microtomography: A preliminary study. J. Mater. Sci. 2009, 44, 5815–5823. [Google Scholar] [CrossRef]
- Baruchel, J.; Lodini, A.; Romanzetti, S.; Rustichelli, F.; Scrivani, A. Phase-contrast imaging of thin biomaterials. Biomaterials 2001, 22, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Coindreau, O.; Mulat, C.; Germain, C.; Lachaud, J.; Vignoles, G.L. Benefits of X-ray CMT for the Modeling of C/C Composites. Adv. Eng. Mat. 2011, 13, 178–185. [Google Scholar] [CrossRef]
- Martin-Herrero, J.; Germain, C. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon 2007, 45, 1242–1253. [Google Scholar] [CrossRef]
- Kobayashi, K.; Izumi, K.; Kimura, H.; Kimura, S.; Ohira, T.; Saito, T.; Kibi, Y.; Ibuki, T.; Takai, K.; Tsusaka, Y.; et al. X-ray phase contrast imaging study of activated carbon/carbon composite. In Applications of Synchrotron Radiation Techniques to Materials Science V; Stock, S.H., Mini, S.M., Perry, D.L., Eds.; Materials Research Society: Warrendale, PA, USA, 2000; Volume 590, pp. 273–278. [Google Scholar]
- Cosmi, F.; Bernasconi, A.; Sodini, N. Phase contrast micro-tomography and morphological analysis of a short carbon fibre reinforced polyamide. Compos. Sci. Technol. 2011, 71, 23–30. [Google Scholar] [CrossRef]
- Le, T.H.; Dumont, P.J.J.; Orgeas, L.; Favier, D.; Salvo, L.; Boller, E. X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 91–103. [Google Scholar] [CrossRef]
- Young, M.L.; Rao, R.; Almer, J.D.; Haeffner, D.R.; Lewis, J.A.; Dunand, D.C. Effect of ceramic preform geometry on load partitioning in Al2O3-Al composites with three-dimensional periodic architecture. Mater. Sci. Eng. A Struct. Mater. 2009, 526, 190–196. [Google Scholar] [CrossRef]
- Kashyap, Y.S.; Agrawal, A.; Sarkar, P.S.; Shukla, M.; Roy, T.; Sinha, A. Study of pyro-carbon coated alumina kernel using mixed contrast transfer based X-ray phase retrieval technique. NDT E Int. 2011, 44, 41–46. [Google Scholar] [CrossRef]
- Kashyap, Y.S.; Yadav, P.S.; Sarkar, P.S.; Agrawal, A.; Roy, T.; Sinha, A.; Dasgupta, K.; Sathiyamoorthy, D. Application of X-ray phase-contrast imaging technique in the study of pyrocarbon-coated zirconia kernels. NDT E Int. 2009, 42, 384–388. [Google Scholar] [CrossRef]
- Kozioziemski, B.J.; Koch, J.A.; Barty, A.; Martz, H.E.; Lee, W.K.; Fezzaa, K. Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced X-ray imaging. J. Appl. Phys. 2005, 97, 063103:1–063103:9. [Google Scholar] [CrossRef]
- Koch, J.A.; Landen, O.L.; Kozioziemski, B.J.; Izumi, N.; Dewald, E.L.; Salmonson, J.D.; Hammel, B.A. Refraction-enhanced X-ray radiography for inertial confinement fusion and laser-produced plasma applications. J. Appl. Phys. 2009, 105, 113112:1–113112:8. [Google Scholar]
- Verrier, S.; Braccini, M.; Josserond, C.; Salvo, L.; Suery, M.; Ludwig, W.; Cloetens, P.; Baruchel, J. Study of materials in the semi-solid state. In X-ray Tomography in Material Science; Baruchel, J., Maire, É., Buffière, J.Y., Eds.; Hermes Science: London, UK, 2000; pp. 77–87. [Google Scholar]
- Weiss, P.; Obadia, L.; Magne, D.; Bourges, X.; Rau, C.; Weitkamp, T.; Khairoun, I.; Bouler, J.M.; Chappard, D.; Gauthier, O.; et al. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials 2003, 24, 4591–4601. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Flueckiger, R.; Reum, M.; Buechi, F.N.; Marone, F.; Stampanoni, M. Determination of material properties of gas diffusion layers: Experiments and simulations using phase contrast tomographic microscopy. J. Electrochem. Soc. 2009, 156, B1175–B1181. [Google Scholar] [CrossRef]
- Fluckiger, R.; Marone, F.; Stampanoni, M.; Wokaun, A.; Buchi, F.N. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy. Electrochim. Acta 2011, 56, 2254–2262. [Google Scholar] [CrossRef]
- Zabler, S.; Cloetens, P.; Zaslansky, P. Fresnel-propagated submicrometer X-ray imaging of water-immersed tooth dentin. Opt. Lett. 2007, 32, 2987–2989. [Google Scholar] [CrossRef] [PubMed]
- Samuelsen, E.J.; Gregersen, O.W.; Houen, P.J.; Helle, T.; Raven, C.; Snigirev, A. Three-dimensional imaging of paper by use of synchrotron X-ray microtomography. J. Pulp Pap. Sci. 2001, 27, 50–53. [Google Scholar]
- Samuelsen, E.J.; Houen, P.J.; Gregersen, O.W.; Helle, T.; Raven, C. three-dimensional imaging of paper by use of synchrotron X-ray microtomography. In Proceedings of Tappi International Paper Physics Conference, San Diego, CA, USA, 26–30 September 1999; pp. 307–312.
- Holmstad, R.; Goel, A.; Ramaswamy, S.; Gregersen, O.W. Visualization and characterization of high resolution 3D images of paper samples. Appita J. 2006, 59, 370–390. [Google Scholar]
- Trtik, P.; Dual, J.; Keunecke, D.; Mannes, D.; Niemz, P.; Stahli, P.; Kaestner, A.; Groso, A.; Stampanoni, M. 3D imaging of microstructure of spruce wood. J. Struct. Biol. 2007, 159, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Gureyev, T.E.; Evans, R.; Stevenson, A.W.; Gao, D.C.; Wilkins, S.W. X-ray phase-contrast microscopy of paper. TAPPI J. 2001, 84, 52. [Google Scholar]
- Gureyev, T.E.; Evans, R.; Stevenson, A.W.; Wilkins, S.W. X-ray phase-contrast microscopy of wood and paper. In Proceedings of 53rd Appita Annual General Conference, Rotorua, New Zealand, 1999; pp. 749–757.
- Zoofan, B.; Kim, J.Y.; Rokhlin, S.I.; Frankel, G.S. Application of phase contrast microradiography in NDT. Mater. Eval. 2005, 63, 1122–1127. [Google Scholar]
- Arhatari, B.D.; Nugent, K.A.; Peele, A.G.; Thornton, J. Phase contrast radiography. II. Imaging of complex objects. Rev. Sci. Instrum. 2005, 76, 113704:1–113704:6. [Google Scholar] [CrossRef]
- Gui, J.-Y.; Zhou, B.; Zhong, Y.-H.; Du, A.; Shen, J. Fabrication of gradient density SiO(2) aerogel. J. Sol Gel Sci. Technol. 2011, 58, 470–475. [Google Scholar] [CrossRef]
- Kozioziemski, B.J.; Sater, J.D.; Moody, J.D.; Sanchez, J.J.; London, R.A.; Barty, A.; Martz, H.E.; Montgomery, D.S. X-ray imaging of cryogenic deuterium-tritium layers in a beryllium shell. J. Appl. Phys. 2005, 98, 103105:1–103105:5. [Google Scholar] [CrossRef]
- Wu, D.; Gao, D.; Mayo, S.C.; Gotama, J.; Way, C. X-ray ultramicroscopy: A new method for observation and measurement of filler dispersion in thermoplastic composites. Compos. Sci. Technol. 2008, 68, 178–185. [Google Scholar] [CrossRef]
- Zahiri, S.H.; Mayo, S.C.; Jahedi, M. Characterization of cold spray titanium deposits by X-ray microscopy and microtomography. Microsc. Microanal. 2008, 14, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Jordan, L.R.; Shukla, A.K.; Behrsing, T.; Avery, N.R.; Muddle, B.C.; Forsyth, M. Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 2000, 86, 250–254. [Google Scholar] [CrossRef]
- Moran, C.J.; Pierret, A.; Stevenson, A.W. X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure. Plant Soil 2000, 223, 99–115. [Google Scholar] [CrossRef]
- CSIRO Services Home. Available online: http://ts-imaging.net/Services/ (accessed on 23 May 2012).
- HySSIL Home Page. Available online: http://www.hyssil.com/ (accessed on 23 May 2012).
- Mayo, S.C.; Miller, P.R.; Wilkins, S.W.; Davis, T.J.; Gao, D.; Gureyev, T.E.; Paganin, D.; Parry, D.J.; Pogany, A.; Stevenson, A.W. Applications of phase-contrast X-ray microscopy in an SEM. J. Phys. IV 2003, 104, 543–546. [Google Scholar]
- Fukuda, K.; Ogawa, T.; Hayashi, K.; Shiozawa, S.; Tsuruta, H.; Tanaka, I.; Suzuki, N.; Yoshimuta, S.; Kaneko, M. Research-and-development of HTTR coated particle fuel. J. Nucl. Sci. Technol. 1991, 28, 570–581. [Google Scholar] [CrossRef]
- Truong, Y.B.; Glattauer, V.; Lang, G.; Hands, K.; Kyratzis, I.L.; Werkmeister, J.A.; Ramshaw, J.A.M. A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion. Biomed. Mater. 2010, 5, 025005. [Google Scholar] [CrossRef]
- Edwards, S.L.; Russell, S.J.; Ingham, E.; Matthews, J.B.; Mitchell, W. Nonwoven Scaffolds of Improved Design for the Tissue Engineering of the Anterior Cruciate Ligament; Woodhead Publishing Ltd.: Cambridge, UK, 2006. [Google Scholar]
- Mookhoek, S.D.; Mayo, S.C.; Hughes, A.E.; Furman, S.A.; Fischer, H.R.; van der Zwaag, S. Applying SEM-Based X-ray microtomography to observe self-healing in solvent encapsulated thermoplastic materials. Adv. Eng. Mater. 2010, 12, 228–234. [Google Scholar] [CrossRef]
- Mayo, S.; Stevenson, A.; Wilkins, S.; Gao, D.; Mookhoek, S.; Meure, S.; Hughes, T.; Mardel, J.; Nie, J.; Morton, A. X-ray Phase-contrast Tomography for Quantitative Characterisation of Self-Healing Polymers. In Proceeding of the 7th Pacific Rim International Conference on Advanced Materials and Processing (PRICM 7), Cairns, Australia, 1–5 August 2010; Volume 654–656, pp. 2322–2325.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mayo, S.C.; Stevenson, A.W.; Wilkins, S.W. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science. Materials 2012, 5, 937-965. https://doi.org/10.3390/ma5050937
Mayo SC, Stevenson AW, Wilkins SW. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science. Materials. 2012; 5(5):937-965. https://doi.org/10.3390/ma5050937
Chicago/Turabian StyleMayo, Sheridan C., Andrew W. Stevenson, and Stephen W. Wilkins. 2012. "In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science" Materials 5, no. 5: 937-965. https://doi.org/10.3390/ma5050937
APA StyleMayo, S. C., Stevenson, A. W., & Wilkins, S. W. (2012). In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science. Materials, 5(5), 937-965. https://doi.org/10.3390/ma5050937