Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acid oxidation of carbon nanotubes
2.2. Thermal stability
2.3. Rheological behavior
2.4. Morphology
2.5. Mechanical behavior
3. Experimental Section
3.1. Materials
3.2. Fabrication of TLCP/CNT nanocomposites
3.3. Characterization
4. Conclusions
References and Notes
- De Jeu, W.H. Physical Properties of Liquid Crystalline Materials; Gordon & Breach: London, UK, 1980. [Google Scholar]
- Gray, G.W.; Winsor, P.A. Liquid Crystals and Plastic Crystals; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Gray, G.W. Thermotropic Liquid Crystals; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Chung, T.S. Thermotropic Liquid Crystal Polymers: solid thin Film Polymerization, Characterization, Blends, and Applications; CRC Press: London, UK, 2001. [Google Scholar]
- Demus, D.; Gray, G.W.; Speiss, H.W.; Goodby, J.W.; Vill, V. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Kiss, G. In situ composites: Blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym. Eng. Sci. 1987, 27, 410–423. [Google Scholar] [CrossRef]
- Dutta, D.; Fruitwala, H.; Kohli, A.; Weiss, R.A. Polymer blends containing liquid crystals: A review. Polym. Eng. Sci. 1990, 30, 1005–1018. [Google Scholar] [CrossRef]
- He, J.; Bu, W. Microstructure formation in polyblends containing liquid crystalline polymers. Polymer 1994, 35, 5061–5066. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H. Influence of viscosity ratio on processing and morphology of thermotropic liquid crystal polymer-reinforced poly(ethylene 2,6-naphthalate) blends. Polym. Int. 2006, 55, 449–455. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H. In situ fibril formation of thermotropic liquid crystal polymer in polyesters blends. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3600–3610. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H.; Kikutani, T. Fiber property and structure development of polyester blend fibers reinforced with a thermotropic liquid crystal polymer. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 395–403. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H. Structure and property relationship of thermotropic liquid crystal polymer and polyester composite fibers. J. Appl. Polym. Sci. 2006, 99, 2211–2219. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Liu, C.; Fan, Y.Y.; Liu, M.; Kong, H.T.; Cheng, H.M.; Dresselhaus, M.S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Kawahara, A.; Nishiguchi, H.; Yoshio, M.; Takita, Y. Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery. J. Power Sources 2001, 97-98, 129–132. [Google Scholar] [CrossRef]
- Wu, M.; Shaw, L. A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates. Int. J. Hydrogen Energy 2005, 30, 373–380. [Google Scholar] [CrossRef]
- De Heer, W.A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180. [Google Scholar] [CrossRef]
- Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Casell, A.M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Lieber, C.M. Nanotube nanotweezers. Science 1999, 286, 2148–2150. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Franklin, N.R.; Zhou, C.; Peng, S.; Cho, J.J.; Dai, H. Nanotube molecular wires as chemical sensor. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Alan, B.; Dalton, A.B.; Collins, S.; Munoz, E.; Razal, J.M.; Ebron, V.H.; Ferraris, J.P.; Coleman, J.N.; Kim, B.G.; Baughman, R.H. Super-tough carbon nanotube fibres. Nature 2003, 423, 703–703. [Google Scholar] [CrossRef] [PubMed]
- Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842–3844. [Google Scholar] [CrossRef]
- Ebbesen, T. Carbon Nanotubes: Preparation and Properties; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P.H. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin, Germany, 2001. [Google Scholar]
- Bokobza, L. Multiwall carbon nanotube elastomeric composites. Polymer 2007, 48, 4907–4920. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Lourie, O.; Cox, D.M.; Wagner, H.D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1638–1641. [Google Scholar] [CrossRef]
- Shaffer, M.S.P.; Windle, A.H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 1999, 11, 937–941. [Google Scholar] [CrossRef]
- Gong, X.; Liu, J.; Baskara, S.; Voise, R.D.; Young, J.S. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 2000, 12, 1049–1052. [Google Scholar] [CrossRef]
- Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Liu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; Rodriguez-Macias, F.; Shon, Y.S.; Lee, T.R.; Colbert, D.T.; Smalley, R.E. Fullerene pipes. Science 1998, 280, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Bellayer, S.; Gilman, J.W.; Eidelman, N.; Bourbigot, S.; Flambard, X.; Fox, D.M.; De Long, H.C.; Trulove, P.C. Preparation of homogeneously dispersed multiwalled carbon nanotube/poly-styrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer. Adv. Funct. Mater. 2005, 15, 910–916. [Google Scholar] [CrossRef]
- Pötschke, P.; Fornes, T.D.; Paul, D.R. Rheological behavior of multiwalled carbon nanotube/poly-carbonate composites. Polymer 2002, 43, 3247–3255. [Google Scholar] [CrossRef]
- Pegel, S.; P.; Petzold, G.; Alig, I.; Dudkin, S.M.; Lellinger, D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49, 974–984. [Google Scholar] [CrossRef]
- Mu, M.; Walker, A.M.; Torkelson, J.M.; Winey, K.I. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 2008, 49, 1332–1337. [Google Scholar] [CrossRef]
- Jung, R.; Park, W.I.; Kwon, S.M.; Kim, H.S.; Jin, H.J. Location-selective incorporation of multiwalled carbon nanotubes in polycarbonate microspheres. Polymer 2008, 49, 2071–2076. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H. Multiwall Carbon Nanotube Reinforced Polyester Nanocomposites. In Polyesters: Properties, Preparation and Application; Yamashita, H., Nakano, Y., Eds.; Nova Science Publishers: New York, NY, USA, 2008; Chapter 2. [Google Scholar]
- Kim, J.Y.; Han, S.I.; Hong, S. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 2008, 49, 3335–3345. [Google Scholar] [CrossRef]
- Kim, J.Y.; Han, S.I.; Kim, D.K.; Kim, S.H. Mechanical reinforcement and crystallization behavior of poly(ethylene 2,6-naphthalte) nanocomposites induced by modified carbon nanotube. Composites: Part A 2009, 40, 45–53. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.K.; Kim, S.H. Effect of modified carbon nanotube on physical properties of thermotropic liquid crystal polyester composites. Eur. Polym. J. 2009, 45, 316–324. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, H.S.; Kim, S.H. Thermal decomposition behavior of carbon nanotube-reinforced poly(ethylene 2,6-naphthalate) nanocomposites. J. Appl. Polym. Sci. 2009, 113, 2008–2017. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, H.S.; Kim, S. H. Unique nucleation of multiwalled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization. Polymer 2006, 47, 1379–1389. [Google Scholar] [CrossRef]
- Kim, J.Y. The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposites by simple melt blending. J. Appl. Polym. Sci. 2009, 112, 2589–2600. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H. Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 1062–1071. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, H.S.; Kim, S.H. Multiwall carbon nanotube-reinforced poly(ethylene terephthalate) nanocomposites by melt compounding. J. Appl. Polym. Sci. 2007, 103, 1450–1457. [Google Scholar] [CrossRef]
- Kim, J.Y.; Han, S.I.; Kim, S.H. Crystallization behavior and mechanical properties of poly(ethylene 2,6-naphthalate)/multiwall carbon nanotube nanocomposites. Polym. Eng. Sci. 2007, 47, 1715–1723. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. Carbon nanotubes in liquid crystals. J. Mater. Chem. 2008, 18, 2890–2898. [Google Scholar] [CrossRef]
- Zhang, S.; Kumar, S. Carbon nanotubes as liquid crystals. Small 2008, 4, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Lee, W. Scientific duo of carbon nanotubes and nematic liquid crystals. J. Phys. D: Appl. Phys. 2009, 42, 063001:1–063001:12. [Google Scholar] [CrossRef]
- Liu, L.; Qin, Y.; Guo, Z.X.; Zhu, D. Reduction of solubilized multi-walled carbon nanotubes. Carbon 2003, 41, 331–335. [Google Scholar] [CrossRef]
- Wu, C.S.; Liao, H.T. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 2007, 48, 4449–4458. [Google Scholar] [CrossRef]
- Yuang, Y.; Young, R.J. Microstructure and mechanical properties of pitch-based carbon fibers. J. Mater. Sci. 1994, 29, 4027–4036. [Google Scholar] [CrossRef]
- Ruan, S.L.; Gao, P.; Yang, X.G.; Yu, T.X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 2003, 44, 5643–5654. [Google Scholar] [CrossRef]
- Gupta, M.C.; Umare, S.S. Studies on poly(o-methoxyaniline). Macromolecules 1992, 25, 138–142. [Google Scholar] [CrossRef]
- Watts, P.C.P.; Mureau, N.; Tang, Z.; Miyajima, Y.; Carey, J.D.; Silva, S.R.P. The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation. Nanotechnology 2007, 18, 175701:1–175701:6. [Google Scholar]
- Grossiord, N.; Loss, J.; Regev, O.; Koning, C.E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 2006, 18, 1089–1099. [Google Scholar] [CrossRef]
- Zhao, L.P.; Gao, L. Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon 2004, 42, 423–426. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Du, F.; Douglas, J.F.; Winey, K.I.; Harris, R.H.; Shields, J.R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Mater. 2005, 4, 928–933. [Google Scholar] [CrossRef]
- Tseng, C.H.; Wang, C.C.; Chen, C.Y. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 2007, 19, 308–315. [Google Scholar] [CrossRef]
- Horowitz, H.H.; Metzger, G. A new analysis of thermogravimetric traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Derrick, D.; Adibempe, D.; Nyario, E.; Robinson, P.; Thompson, G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 2007, 48, 5662–5670. [Google Scholar] [CrossRef]
- Abdel-Goad, M.; Pötschke, P. Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. J. Non-Newtonian Fluid Mech. 2005, 128, 2–6. [Google Scholar] [CrossRef]
- Wagener, R.; Reisinger, T.J.G. A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 2003, 44, 7513–7518. [Google Scholar] [CrossRef]
- Shenoy, A.V. Rheology of Filled Polymer Systems; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Ferry, J. Viscoelastic Properties of Polymers; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 1996, 8, 1728–1734. [Google Scholar] [CrossRef]
- Krisnamoorti, R.; Giannelis, E.P. Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 1997, 30, 4097–4102. [Google Scholar] [CrossRef]
- Rosedalev, J.H.; Bates, F.S. Rheology of ordered and disordered symmetric poly(ethylene propylene)-poly(ethyl ethylene) diblock copolymers. Macromolecules 1990, 23, 2329–2338. [Google Scholar] [CrossRef]
- Larson, R.G.; Winey, K.I.; Patel, S.S.; Watanabe, H.; Bruinsma, R. The rheology of layered liquids: Lamellar block copolymers and smectic liquid crystals. Rheol. Acta 1993, 32, 245–253. [Google Scholar] [CrossRef]
- Cho, J.; Daniel, I.M. Reinforcement of carbon/epoxy composites with multiwall carbon nanotubes and dispersion enhancing block copolymers. Scripta Mater. 2008, 58, 533–536. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D: Appl. Phys. 2002, 35, L77–L80. [Google Scholar] [CrossRef]
- Meng, H.; Sui, G.X.; Pang, P.F.; Yang, R. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 2008, 49, 610–620. [Google Scholar] [CrossRef]
- Qian, D.; Dickey, E.C.; Andrew, R.; Rantall, T. Load transfer and deformation mechanism in CNT-PS composites. Appl. Phys. Lett. 2000, 76, 2868–2870. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites; Marcel Dekker: New York, NY, USA, 1993. [Google Scholar]
- Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.H.; Smalley, R.E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288. [Google Scholar] [CrossRef]
- Saengsuwan, S.; Bualek-Limcharoen, S.; Mitchell, G.R.; Olley, R.H. Thermotropic liquid crystalline polymer/polypropylene in situ composite films: rheology, morphology, molecular orientation and tensile properties. Polymer 2003, 44, 3407–3415. [Google Scholar] [CrossRef]
- Pan, Z.W.; Xie, S.S.; Lu, L.; Chang, B.H.; Sun, L.F.; Zhou, W.Y.; Wang, G.; Zhang, D.L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 1999, 74, 3152–3154. [Google Scholar] [CrossRef]
- Agarwal, B.D.; Broutman, L.G. Analysis and Performance of Fiber Composites; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.T.; Bradshow, R.D.; Brinson, L.C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 2002, 80, 4647–4649. [Google Scholar] [CrossRef]
- Fisher, F.T.; Bradshow, R.D.; Brinson, L.C. Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 2003, 63, 1689–1703. [Google Scholar] [CrossRef]
- Gorga, R.E.; Cohen, R.E. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 2690–2702. [Google Scholar] [CrossRef]
- Tzavalas, S.; Drakonakis, V.; Mouzakis, D.E.; Fisher, D.; Gregoriou, G. Effect of carboxy-functionalized multiwall carbon nanotube (MWNT-COOH) on crystallization and chain conformations of poly(ethylene terephthalate) (PET) in PET-MWNT nanocomposites. Macromolecules 2006, 39, 9150–9156. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, J.Y. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites. Materials 2009, 2, 1955-1974. https://doi.org/10.3390/ma2041955
Kim JY. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites. Materials. 2009; 2(4):1955-1974. https://doi.org/10.3390/ma2041955
Chicago/Turabian StyleKim, Jun Young. 2009. "Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites" Materials 2, no. 4: 1955-1974. https://doi.org/10.3390/ma2041955