Biodegradable Polymers
Abstract
:1. Introduction
2. Biodegradable Polymers Derived from Petroleum Resources
2.1. Polymers with additives
2.2. Synthetic polymers with hydrolysable backbones
2.2.1. Aliphatic polyesters
Trade name | Company | Country |
---|---|---|
NatureWorks® | Cargill Dow | USA |
Galacid® | Galactic | Belgium |
Lacea® | Mitsui Chem. | Japan |
Lacty® | Shimadzu | Japan |
Heplon® | Chronopol | USA |
CPLA® | Dainippon Ink Chem. | Japan |
Eco plastic® | Toyota | Japan |
Treofan® | Treofan | Netherlands |
PDLA® | Purac | Netherlands |
Ecoloju® | Mitsubishi | Japan |
Biomer® L | Biomer | Germany |
2.2.2. Aromatic copolyesters
2.2.3. Polyamides and poly(ester-amide)s
2.2.4. Polyurethanes
2.2.5. Polyanhydrides
2.3. Synthetic polymers with carbon backbones
2.3.1. Vinyl polymers
3. Biodegradable Polymers Derived from Renewable Resources
3.1. Natural polymers or agro-polymers
3.1.1. Proteins
3.1.1.1. Proteins from animal sources
3.1.1.2. Proteins from vegetal sources
3.1.2. Polysaccharides
3.1.2.1. Polysaccharides from marine sources
3.1.2.2. Polysaccharides from vegetal sources
Trade name | Company | Country |
---|---|---|
Mater-Bi®, Biocool® | Novamont | Italy |
Solanyl® | Rodenburg Biopolymers | Netherlands |
Ecofram® | National Starch | USA |
Vegeplast® | Végémat | France |
Biolice® | Limagrain | France |
Biotech® | Biotech | Germany |
Bioplast® | Biotec | England |
Plantic® | Plantic Technologies | Australia |
3.2. Bacterial Polymers
3.2.1. Semi-synthetic polymers
3.2.2. Microbial polymers
3.2.2.1. Microbial polyesters
4. Blends of Biodegradable Polymers
4.1. Starch-based blends
4.2. Others blends
5. Applications
5.1. Medicine and pharmacy
Product | Society | Composition | Applications |
---|---|---|---|
Mater-Bi® | Novamont (Italy) | Starch and polyester | Collection bags for green waste, agricultural films, disposable items. |
Polynat® | Roverc’h (France) | Rye flower (80%) | Disposable items, flower containers |
Ecofoam® | American Excelsior Company (USA) | Starch | Wrapping plastics |
Biopol® | Goodfellow (Great Britain) | PHB/PHV | Razors, bottles |
Eco-pla® | Cargill Dow (USA) | PLA | Sanitary products, sport clothes, conditioning and packaging |
Bio-D® | Cirad (France) | Proteins extracted from cotton seed | Agricultural films |
Ecoflex® | BASF (Germany) | Co-polyester | Agricultural films |
Eastar Bio® | Eastman (Great Britain) | Co-polyester | Agricultural films |
BAK 1095® | Bayer (Germany) | Polyester amide | Disposable items, flower containers |
5.1.1. Natural or bacterial polymers
5.1.2. Synthetic polymers
5.2. Packaging
5.3. Agriculture
5.4. Others fields
6. Conclusions
References and Notes
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Willett, J.L. Mechanical properties of LDPE/granular starch composites. J. Appl. Polym. Sci. 1994, 54, 1685–1695. [Google Scholar] [CrossRef]
- Cho, J.W.; Woo, K.S.; Chun, B.C.; Park, J.S. Ultraviolet selective and mechanical properties of polyethylene mulching films. Eur. Polym. J. 2001, 37, 1227–1232. [Google Scholar] [CrossRef]
- Jaserg, B.; Swanson, C.; Nelsen, T.; Doane, W. Mixing polyethylene-poly(ethylene-co-acrylic acid) copolymer starch formulations for blown films. J. Polym. Mat. 1992, 9, 153–162. [Google Scholar]
- Lawton, J.T. Effect of starch type on the properties of starch containing films. Carbohydr. Polym. 1996, 29, 203–208. [Google Scholar] [CrossRef]
- Briassoulis, D. Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym. Deg. Stab. 2006, 91, 1256–1272. [Google Scholar] [CrossRef]
- Pathiraja, G.; Mayadunne, R.; Adhikari, R. Recent developments in biodegradable synthetic polymers. Biotech. Ann. Rev. 2006, 12, 301–347. [Google Scholar]
- Jakubowicz, I. Evaluation of degradability of biodegradable polyethylene (PE). Polym. Deg. Stab. 2003, 80, 39–43. [Google Scholar] [CrossRef]
- Chandra, R.; Rustgi, R. Biodegradable polymers. Progr. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Progr. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Okada, M. Chemical synthesis of biodegradable polymers. Progr. Polym. Sci. 2002, 27, 87–133. [Google Scholar] [CrossRef]
- Lofgren, A.; Albertsson, A.C.; Dubois, P.; Herome, R. Recent advances in ring opening polymerization of lactones and related compounds. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1995, 35, 379–418. [Google Scholar] [CrossRef]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as medical devices. Med. Plastics Biomater. Mag. 1998, 3, 30. Available online: http://www.devicelink.com/mpb/archive/-98/03/002.html accessed January 5, 2009. [Google Scholar]
- Maharana, T.; Mohanty, B.; Negi, Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Progr. Polym. Sci. 2009, 34, 99–124. [Google Scholar] [CrossRef]
- Briassoulis, D. An overview on the mechanical behavior of biodegradable agricultural films. J. Poly. Environ. 2004, 12, 65–81. [Google Scholar] [CrossRef]
- Södergard, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Progr. Polym. Sci. 2002, 27, 1123–1163. [Google Scholar] [CrossRef]
- Vert, M. Polymères de fermentation. Les polyacides lactiques et leurs précurseurs, les acides lactiques. Actual. Chim. 2002, 11-12, 79–82. [Google Scholar]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, M.; Hirami, M. Structural effects on biodegradation of aliphatic polyesters. Polym. Adv. Technol. 1997, 8, 203. [Google Scholar] [CrossRef]
- Rutot, D.; Dubois, P. Les (bio)polymères biodégradables: l’enjeu de demain? Chim. Nouv. 2004, 86, 66–75. [Google Scholar]
- Jacobsen, S.; Fritz, H.G. Plasticizing polylactide – the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 1999, 39, 1303–1310. [Google Scholar] [CrossRef]
- Zeng, J.B.; Li, Y.D.; Zhu, Q.Y.; Yang, K.K.; Wang, X.L.; Wang, Y.Z. A novel biodegrable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50, 1178–1186. [Google Scholar] [CrossRef]
- Perego, G.; Cella, G.D.; Bastioli, C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996, 59, 37–43. [Google Scholar] [CrossRef]
- Miller, R.A.; Brady, J.M.; Cutright, D.E. Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mat. Res. 1977, 11, 711–719. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Chitosan/oligo L-lactide graft copolymers: effect of hydrophobic side chains on the physico-chemical properties and biodegradability. Carbohydr. Polym. 2006, 24, 254–266. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of polyesters by lipases. Nature 1977, 270, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Fujimaki, T. Processability and properties of aliphatic polyesters, “Bionolle”, synthesized by polycondensation reaction. Polym. Degrad. Stab. 1998, 59, 209–214. [Google Scholar] [CrossRef]
- Takiyama, E.; Fujimaki, T. Biodegradable Plastics and Polymers; Doi, Y., Fukuda, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 12, p. 150. [Google Scholar]
- Muller, R.J.; Witt, U.; Rantze, E.; Deckwer, W.D. Architecture of biodegradable copolyesters containing aromatic constituents. Polym. Degrad. Stab. 1998, 59, 203–208. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Li, L. Multiple melting behavior of poly(butylene succinate) during heating scan by DSC. J. Polym. Sci. Polym. Phys. 2007, 43, 3163–3170. [Google Scholar]
- Papageorgiou, G.; Achilias, G.; Bikiaris, D. Crystallization kinetics of biodegradable poly(butylenes succinate) under isothermal and non-isothermal conditions. Macromol. Chem. Phys. 2007, 208, 1250–1264. [Google Scholar] [CrossRef]
- Ishioka, R.; Kitakuni, E.; Ichikawa, Y. Aliphatic polyesters: “Bionolle”. In Biopolymers, vol 4. Polyesters III. Application and commercial products; Doi, Y., Steinbüchel, A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 275–297. [Google Scholar]
- Yoshikawa, K.; Ofuji, N.; Moteki, Y.; Fujimaki, T. Molecular weight distribution and branched structure of biodegradable aliphatic polyesters determined by SEC-MALLS. Polymer 1996, 37, 1281–1284. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Z.; Liu, Q.; Wang, Z.; Jin, J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci. 2003, 90, 982–990. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Cao, A.; Wang, J. In vitro evaluation of biodegradable poly(butylenesuccinate) as a novel biomaterial. Macromol. Biosci. 2005, 5, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ji, J.; Zhang, W.; Zhang, Y.; Jiang, J.; Wu, Z.; Pu, S.; Chu, P.K. Biocompatibility and bioactivity of plasma treated biodegradable poly(butylene succinate). Acta Biomater. 2009, 5, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotiu, C. Biodegradble aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co butylene adipate). Polym. Degrad. Stab. 2006, 91, 367–376. [Google Scholar] [CrossRef]
- Yang, K.K.; Wang, X.L.; Wang, Y.Z.; Huang, H.X. Effects of molecular weights of poly(p-dioxanone) on its thermal rheological and mechanical properties and in vitro degradability. Mater. Chem. Phys. 2004, 87, 218–221. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, X.L.; Wang, Y.Z.; Yang, K.K.; Li, J. A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym. Degrad. Stab. 2005, 88, 294–299. [Google Scholar] [CrossRef]
- Zhu, K.J.; Hendren, R.W.; Jensen, K.; Pitt, C.G. Synthesis, properties and biodegradation of poly(1.3-trimethylene carbonate). Macromolecules 1991, 24, 1736–1740. [Google Scholar] [CrossRef]
- Tao, J.; Hu, D.; Liu, L.; Liu, N.; Song, C.; Wang, S. Thermal properties and degradability of poly (propylene carbonate)/poly (β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends. Polym. Degrad. Stab. 2009, 94, 575–583. [Google Scholar] [CrossRef]
- Pranamuda, H.; Chollakup, R.; Tokiwa, Y. Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. Strain HT-6. Appl. Environ. Microbiol. 1999, 65, 4220–4222. [Google Scholar] [PubMed]
- Shaik, A.A.; Richter, M.; Kricheldorf, H.R.; Krüger, R.P. New polymers syntheses CIX. Biodegradable, alternating copolyesters of terephtalic acids, aliphatic dicarboxylic acids and alkane diols. J. Polym. Sci. A-Polym. Chem. 2001, 39, 3371–3382. [Google Scholar]
- Witt, U.; Muller, R.J.; Deckwer, W.D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Envir. Polym. Degrad. 1997, 5, 81–89. [Google Scholar] [CrossRef]
- Witt, U.; Eining, T.; Yamamoto, M.; Kleeberg, I.; Deckwer, W.D.; Müller, R.J. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 2001, 44, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276-277, 1–24. [Google Scholar] [CrossRef]
- Sony, R.K.; Shweta, S.; Dutt, K. Studies on biodegradability of copolymers of lactic acid, terephtalic acid and ethylene glycol. Polym. Degrad. Stab. 2009, 94, 432–437. [Google Scholar] [CrossRef]
- Olewnik, E.; Czerwinski, W. Synthesis, structural study and hydrolytic degradation of copolymer based on glycolic acid and bis-2-hydroxyethyl terephtalate. Polym. Degrad. Stab. 2009, 94, 221–226. [Google Scholar] [CrossRef]
- Kondratowicz, F.L.; Ukielski, R. Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephtalate) copolymers. Polym. Degrad. Stab. 2009, 94, 375–382. [Google Scholar] [CrossRef]
- Kinoshita, S.; Negora, S.; Muramatsu, M.; Bisaria, V.S.; Sawada, S.; Okada, S. 6-Aminohexanoic Acid Cyclic Dimer Hydrolase. A New Cyclic Amide Hydrolase Produced by Acromobacter guttatus KI72. Eur. J. Biochem. 1977, 80, 489–495. [Google Scholar]
- Paredes, N.; Rodriguez-Galan, A.; Puiggali, J. Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J. Polym. Sci. A-Polym. Chem. 1998, 36, 1271–1282. [Google Scholar] [CrossRef]
- Saotome, Y.; Tashiro, M.; Miyazawa, T.; Endo, T. Enzymatic degrading solubilization of a polymer comprising glycine, phenylalanine, 1,2-ethanodiol, and adipic acid. Chem. Lett. 1991, 1, 153–154. [Google Scholar] [CrossRef]
- Grigat, E.; Koch, R.; Timmermann, R. Thermoplastic and biodegradable polymers of cellulose. Polym. Degrad. Stab. 1998, 59, 223. [Google Scholar] [CrossRef]
- Kim, B.K.; Seo, J.W.; Jeong, H.M. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 2003, 39, 85–91. [Google Scholar] [CrossRef]
- Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakarahara, T. Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl. Microbiol.Biotechnol. 1999, 51, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Guelcher, S.A.; Gallagher, K.M.; Didier, J.E.; Klinedinst, D.B.; Doctor, J.S.; Goldstein, A.S. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 2005, 1, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.K.; Mauritz, K.A.; Storey, R.F.; Wiggins, J.S. Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and L-lysine diisocyanate. J. Polym. Sci. A-Polym. Chem. 2006, 44, 2990–3000. [Google Scholar] [CrossRef]
- Zia, K.M.; Zuber, M.; Bhatti, I.A.; Barikani, M.; Sheikh, M.A. Evaluation of biocompatibility and mechanical behaviour of polyurethane elastomers based on chitin/1,4-butane diol blends. Int. J. Biol. Macromol. 2009, 44, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.M.; Barikani, M.; Zuber, M.; Bhatti, I.A.; Sheikh, M.A. Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 2008, 74, 149–158. [Google Scholar] [CrossRef]
- Tatai, L.; Moore, T.G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, A. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007, 28, 5407–5417. [Google Scholar] [CrossRef] [PubMed]
- Storey, R.F.; Wiggins, J.S.; Puckett, A.D. Hydrolysable poly(ester urethane) networks from L-lysine diisocyanate and D,L- lactide/e-caprolactone homo and copolyester triols. J. Polym. Sci. A-Polym. Chem. 1994, 32, 2342–2345. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Beckman, E.J.; Piesco, N.P.; Agrawal, S. A new peptide-based urethane polymer: synthesis, biodegradation and potential to support cell growth in-vitro. Biomaterials 2000, 21, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Nobel, K.L. Waterborne polyurethanes. Prog. Org. Coating 1997, 32, 131–136. [Google Scholar] [CrossRef]
- Wicks, Z.W.; Wicks, D.A.; Rosthauser, J.W. Two package waterborne urethane systems. Prog. Org. Coatings. 2002, 44, 161–183. [Google Scholar] [CrossRef]
- Delpecha, M.C.; Coutinho, F.M.B. Waterborne anionic polyurethanes and poly(urethane-urea)s: Influence of the chain extender on mechanical and adhesive properties. Polym. Testing 2000, 19, 939–952. [Google Scholar] [CrossRef]
- Lu, Y.; Tighzert, L.; Berzin, F.; Rondot, S. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 2005, 61, 174–182. [Google Scholar] [CrossRef]
- Lu, Y.; Tighzert, L.; Dole, P.; Erre, D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 2005, 46, 9863–9870. [Google Scholar] [CrossRef]
- Cao, X.; Chang, P.R.; Huneault, M.A. Preparation and properties of plasticized starch modified with poly(ε-caprolactone) based waterborne polyurethane. Carbohyd. Polym. 2008, 71, 119–125. [Google Scholar] [CrossRef]
- Kumar, N.; Langer, R.S.; Domb, A.J. Polyanhydrides: An overview. Adv. Drug Deliv. Rev. 2002, 54, 889–910. [Google Scholar] [CrossRef] [PubMed]
- Tamada, J.; Langer, R. The development of polyanhydrides for drug delivery applications. J. Biomater. Sci. Polym. Ed. 1992, 3, 315–353. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.W.; Brott, B.C.; Langer, R. Biodegradable polyanhydrides as drug carrier matrices: Characterization, degradation and release characteristics. J. Biomed. Mater. Res. 1985, 19, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Ibim, S.E.; Uhrich, K.E.; Attawia, M.; Shastri, V.R.; El-Amin, S.F.; Bronson, E. Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J. Biomed. Mater. Res. 1998, 43, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Hameda, N.; Morita, M.; Tsujisaka, Y. Purification and properties of a polyvinylalcohol-degrading enzyme produced by a strain of Pseudomonas. Arch. Biochem. Biophys. 1976, 174, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Stading, M.; Wellner, N. Plasticization of a protein-based film by glycerol: A spectroscopic, mechanical, and thermal study. J. Agric. Food Chem. 2006, 54, 4611–4616. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zheng, Q. Improved tensile strength of glycerol-plasticized gluten. Bioresour. Technol. 2008, 99, 7665–7671. [Google Scholar] [CrossRef] [PubMed]
- Gelse, K.; Poschi, E.; Aigner, T. Collagens – structure, function and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabata, Y.; Lonikar, S.V.; Horii, F.; Ikada, Y. Immobilization of collagen onto polymer surfaces having hydroxyl groups. Biomaterials 1986, 7, 234–238. [Google Scholar]
- Sperling, L.H.; Carrher, C.E. Gelatin. Encyclopedia of polymer science and engineering; Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, G., Eds.; J. Wiley and sons: New York, USA, 1988; Volume 12, p. 672. [Google Scholar]
- Gomez-Guillen, M.C.; Perez-Mateos, M.; Gomez-Estaca, J.; Lopez-Caballero, E.; Gimenez, B.; Montero, P. Fish gelatin: A renewable material for developing active biodegradable films. Trends Food Sci. Technol. 2009, 20, 3–16. [Google Scholar] [CrossRef]
- Cao, N.; Yang, X.; Fu, Y. Effetcs of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 2009, 23, 729–735. [Google Scholar] [CrossRef]
- Ikada, Y. Surface modification of polymers for medical applications. Biomaterials 1994, 15, 725–736. [Google Scholar]
- Attenburrow, G.; Barnes, D.J.; Davies, A.P.; Ingman, S.J. Rheological properties of wheat gluten. J. Cereal. Sci. 1990, 12, 1–14. [Google Scholar] [CrossRef]
- Pouplin, M.; Redl, A.; Gontard, N. Glass transition of wheat gluten plasticized with water, glycerol or sorbitol. J. Agric. Food Chem. 1999, 47, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Domenek, S.; Feuilloley, P.; Grataud, J.; Morel, M.H.; Guilbert, S. Biodegradability of wheat gluten based bioplastics. Chemosphere 2004, 54, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Jerez, A.; Partal, P.; Martinez, I.; Callegos, C.; Guerreo, A. Rheology and processing of gluten based bioplastics. Biochem. Eng. 2005, 26, 131–138. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. Soy Protein Isolates, Concentrates, and Textured Soy Protein Products; Soyfoods Center: Lafayette, USA, 1989. [Google Scholar]
- Teng, W.L.; Khor, E.; Tan, T.K.; Lim, L.Y.; Tan, S.C. Concurrent production of chitin from shrimp shells and fungi. Carbohydr. Res. 2001, 332, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Tokura, S.; Tamura, H. Chitin and Chitosan. Compr. Glycosci. 2007, 2, 449–475. [Google Scholar]
- Je, J.Y.; Kim, S.K. Antioxidant activity of novel chitin derivative. Bioorg. Med. Chem. Lett. 2006, 14, 5989–5994. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, B.I.; Jung, S.T.; Park, J.H. Biopolymer composite films based on carrageenan and chitosan. Mater. Res. Bull. 2001, 36, 511–519. [Google Scholar] [CrossRef]
- Muzzarelli, R.; Weckx, M.; Bicchiega, V. N-carboxybutyl chitosan as a wound dressing and a cosmetic ingredient. Chim. Oggi. 1991, 9, 33–37. [Google Scholar]
- Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan-present status and applications. Carbohyd. Polym. 2005, 62, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Review Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Selvamurugan, N.; Nair, S.V.; Tokura, S.; Tamura, S. Preparative methods of phosphorylated chitin and chitosan—An overview. Int. J. Biol. Macromol. 2008, 43, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A.C.; Aman, P. The influence of amylase and amylopectine characteristics on gelatinization and retrogradation properties of different starches. Carbohyd. Polym. 1998, 35, 119–134. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Hoover, R.; Shahidi, F.; Perera, C.; Jane, J. Composition, molecular structure and physicochemical properties of starches from four field pea cultivars. Food Chem. 2001, 74, 189–202. [Google Scholar] [CrossRef]
- Dubief, D.; Samain, E.; Dufresne, A. polyssaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite material. Macromolecules 1999, 32, 5765–5771. [Google Scholar] [CrossRef]
- Angellier, H.; Molina, B.S.; Lebrun, L.; Dufresne, A. processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 2005, 28, 3783–3792. [Google Scholar] [CrossRef]
- Angellier, H.; Molina-Boisseau, S.; Dole, P.; Dufresne, A. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 2006, 7, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.; Schwach, E.; Averous, L.; Couturier, Y. Properties of biodegradable multilayer films based on plasticized wheat starch. Starch 2001, 53, 372–380. [Google Scholar] [CrossRef]
- Weber, C.J. Biobased packaging materials for the food industry, status and perspectives; Weber, C.J., Ed.; KVL Department of Dairy and Food Science: Frederiksberg, Denmark, 2000. [Google Scholar]
- Imam, S.H.; Gordon, S.H.; Shogren, R.L.; Greene, R.V. Biodegradation of starch-poly(β-hydroxybutyrate-co-valerate) composites in municipal activated sludge. J. Envir. Polym. Degr. 1995, 3, 205–213. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Hulleman, S.H.D.; de Wit, D.; Vliegenthart, J.F.G. Crystallinity in starch bioplastics. Ind. Crops Prod. 1996, 5, 11–22. [Google Scholar] [CrossRef]
- Myllarinen, P.; Buleon, A.; Lahtinen, R.; Forssell, P. The crystallinity of amylose and amylopectin films. Carbohydr. Polym. 2002, 48, 41–48. [Google Scholar] [CrossRef]
- Yukuta, T.; Akira, I.; Masatoshi, K. Developments of biodegradable plastics containing polycaprolactone and/or starch. Polym. Mater. Sci. Eng. 1990, 63, 742–749. [Google Scholar]
- Netravali, A.N.; Chabba, S. Composites get greener. Mat. Today 2003, 6, 22–29. [Google Scholar] [CrossRef]
- Parandoosh, S.M.; Hudson, S.M. The acetylation and enzymatic degradation of starch films. J. Appl. Polym. Sci. 1993, 48, 787–791. [Google Scholar] [CrossRef]
- Beliakova, M.K.; Aly, A.A.; Abdel-Mohdy, F.A. Grafting of poly(methacrylic acid) on starch and poly(vinyl alcohol). Starch – Starke 2004, 56, 407–412. [Google Scholar] [CrossRef]
- Lawton, J.W.; Fanta, G.F. Glycerol-plasticized films prepared from starch-poly(vinyl alcohol) mixture : effect of poly(ethylene-co-acrylic acid). Carbohyd. Polym. 1994, 23, 275–280. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Wang, Y. Properties of starch blends with biodegradable polymers. J. Macrom. Sci. C-Polym. Rev. 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Scott, G.; Gilead, D. Degradable Polymers: Principles and Applications; Chapman and Hall: London, UK, 1995; pp. 247–258. [Google Scholar]
- Klemm, D.; Shmauder, H.P.; Heinze, T. Cellulose. In Biopolymers, vol. 6. Polysaccharides II; Vandamme, E.J., De Baets, S., Steinbüchel, A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 275–319. [Google Scholar]
- Gu, J.D.; Eberiel, D.; McCarthy, S.P.; Gross, R.A. Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. J. Environ. Polym. Degr. 1993, 1, 143–153. [Google Scholar] [CrossRef]
- Gu, J.D.; Eberiel, D.; McCarthy, S.P.; Gross, R.A. Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments. J. Environ. Polym. Degr. 1993, 1, 281–291. [Google Scholar] [CrossRef]
- Biswas, A.; Saha, B.C.; Lawton, J.W.; Shogren, R.L.; Willett, J.L. Process for obtaining cellulose acetate from agricultural by-products. Carbohyd. Polym. 2006, 64, 134–137. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Gedon, S.C.; White, A.W.; Wood, M.D. Cellulose acetate propionate and poly(tetramethylene glutarate) blends. Macromolecules 1993, 26, 2963–2967. [Google Scholar] [CrossRef]
- Teramoto, Y.; Nishio, Y. Cellulose diacetate-graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer 2003, 44, 2701–2709. [Google Scholar] [CrossRef]
- Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Madison, L.L.; Huisman, G.W. Metabolic Engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [PubMed]
- Masahiko, O. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 2002, 27, 87–133. [Google Scholar] [CrossRef]
- Mecking, S. Nature ou petrochemistry? Biologically degradable materials. Angew. Chem. Int. Ed. 2004, 43, 1078–1085. [Google Scholar] [CrossRef]
- Marshall, D. Back to nature. Eur. Plastics News(sutton) 1998, March, 1–3. [Google Scholar]
- Hartmann, M.H. High molecular weight polylactic acid polymers. In Biopolymers from Renewable Resources; Macromolecular Systems-Materials approach; Kaplan, D.L., Ed.; Springer-Verlag: Berlin, Germany, 1998; Chapter 15; pp. 367–411. [Google Scholar]
- Wee, Y.J.; Kim, J.N.; Ryu, H.W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006, 44, 163–172. [Google Scholar]
- Lunego, J.M.; Garcia, B.; Sandoval, A.; Naharro, G.; Olivera, E.R. Bioplastics from microorganisms. Curr. Opin. Microbiol. 2003, 6, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Piermaria, J.A.; Pinotti, A.; Garcia, M.A.; Abraham, A.G. Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocoll. 2009, 23, 684–690. [Google Scholar] [CrossRef]
- Kunioka, M. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Technol. 1997, 47, 469–475. [Google Scholar] [CrossRef]
- Poirier, Y. Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog. Lipid Res. 2002, 41, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Purnell, M.P.; Petrasovits, L.A.; Nielsen, L.K.; Brumbley, S.M. Plant Biotechnol. 2007, 5, 173–184.
- Mercan, N.; Aslim, B.; Yürsekdag, Z.N.; Beyatli, Y. Production of poly-β-hydroxybutyrate (PHB) by some Rhizobium bacteria. Turk. J. Biol. 2002, 26, 215. [Google Scholar]
- Lenz, R.W. Biodegradable polymers. Adv. Polym. Sci. 1993, 107, 1–40. [Google Scholar]
- Stevens, E.S. What makes green plastics green? Biocycle 2003, 44, 24–27. [Google Scholar]
- Zhang, L.; Deng, X.; Zhao, S.; Huang, Z. Biodegradable polymer blends of poly(3-hydroxybutyrate) and starch acetate. Polym. Int. 1997, 44, 104. [Google Scholar] [CrossRef]
- Savenkova, L.; Gercberga, Z.; Nikolaeva, V.; Dzene, A.; Bibers, I.; Kahlnin, M. Mechanical properties and biodegradation characteristics of PHB bases films. Proc. Biochem. 2000, 35, 573. [Google Scholar] [CrossRef]
- El-Hadi, A.; Schnabel, R.; Straube, E.; Muller, G.; Henning, S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. J. Polym. Testing 2002, 3, 665–674. [Google Scholar] [CrossRef]
- Barham, P.J.; Keller, A. The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J. Polym. Sci. B-Polym. Phys 1986, 24, 69. [Google Scholar] [CrossRef]
- Grassie, N.; Murray, E.J.; Holmes, P.A. The thermal degradation of poly(-(D)-β-hydroxybutyric acid) : Part 2 – Changes in molecular weight. Polym. Degrad. Stab. 1984, 6, 95. [Google Scholar] [CrossRef]
- Kim, M.N.; Lee, A.R.; Yoon, J.S.; Chin, I.J. Biodegradation of poly(3-hydroxybutyrate), sky-green and mater-Bi by fungi isolated from soils. Eur. Polym. J. 2000, 36, 1677. [Google Scholar] [CrossRef]
- Hsieh, W.C.; Wada, Y.; Chang, C.P. Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delfia acidovorans. J. Tw. Inst. Chem. Eng. 2009. [CrossRef]
- Avella, M.; Immirzi, B.; Malinconico, M.; Martuscelli, E.; Volpe, M.G. Reactive blending methodologies for Biopol. Polym. Int. 1996, 39, 191–204. [Google Scholar] [CrossRef]
- Sheldon, J.R.; Lando, J.B.; Agostini, D.E. Synthesis and characterization of poly(β-hydroxybutyrate). J. Polym. Sci. Polym. Lett. B 1971, 9, 173–178. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, Y.; Yamaguchi, A.; Nishishita, T. Ring-opening copolymerization of optically active β-butyrolactone with several lactones catalysed by distannoxane complexes: Study of the mechanism. Int. J. Biol. Macromol. 1996, 25, 235–247. [Google Scholar]
- Juzwa, M.; Jedlinski, Z. Novel synthesis of poly(3-hydroxybutyrate). Macromolecules 2006, 39, 4627–3460. [Google Scholar] [CrossRef]
- Sheu, D.S.; Chen, W.M.; Yang, J.Y.; Chang, R.C. Thermophilic bacterium caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enz. Microbial. Technol. 2009, 44, 289–294. [Google Scholar] [CrossRef]
- Hsieh, W.C.; Wada, Y.; Mitobe, T.; Mitomo, H.; Seko, N.; Tamada, M. Effect of hydrophilic and hydrophobic monomers grafting on microbial poly(3-hydroxybutyrate). J. Tw. Inst. Chem. Eng. 2009. [CrossRef]
- Amass, W.; Amass, A.; Tighe, B. A Review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89–144. [Google Scholar] [CrossRef]
- Parikh, M.; Gross, R.A.; MacCarthy, S.P. The influence of injection molding conditions on biodegradable polymers. J. Injection Molding Technol. 1998, 2, 30. [Google Scholar]
- Briassoulis, D. Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym. Degr. 2007, 92, 1115–1132. [Google Scholar] [CrossRef]
- Chen, C.; Dong, L.; Yu, P.H.F. Characterization and properties of biodegradable poly(hydroxyalkanoates) and 4,4-dihydroxydiphenylpropane blends : intermolecular hydrogen bonds, miscibility and crystallization. Eur. Polym. J. 2006, 42, 2838–2848. [Google Scholar] [CrossRef]
- Kotnis, M.A.; O’Brine, G.S.; Willett, J.L. Processing and mechanical properties of biodegradable poly(hydroxybutyrate-co-valerate)-starch compositions. J. Environ. Polym. Degr. 1995, 3, 97–105. [Google Scholar] [CrossRef]
- Ramkumar, D.H.S.; Bhattacharya, M. Steady shear and dynamic properties of biodegradable polyesters. Polym. Eng. Sci. 1998, 38, 1426–1435. [Google Scholar] [CrossRef]
- Doi, Y.; Abe, C. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-chloroalkanoates. Macromolecules 1990, 23, 3705–3707. [Google Scholar] [CrossRef]
- Nakamura, S.; Kunioka, M.; Doi, Y. Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). J. Macromol. Sci. 1991, 28, 15–24. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Azizan, M.N.; Sudesh, K. Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxyvalérate) synthetized by Comamonas acidovorans. Polym. Degrad. Stab. 2004, 84, 129–134. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Valentin, H.E. Diversity of bacterial polyhydroalkanoic acids. FEMS Microbiol. Lett. 1995, 128, 219–228. [Google Scholar] [CrossRef]
- Arun, A.; Arthi, R.; Shanmugabalaji, V.; Eyini, M. Microbial production of poly-β-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresour. Technol. 2009, 100, 2320–2323. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Imam, S.; Gordon, S.; Greene, R.V. Starch- polyvinyl alcohol crosslinked film— performance and biodegradation. J. Environ. Polym. Degr. 1997, 5, 111–117. [Google Scholar] [CrossRef]
- Stenhouse, P.J.; Ratto, J.; Schneider, N.S. Structure and properties of starch/poly(ethylene-co-vinyl alcohol) blown films. J. Appl. Polym. Sci. 1997, 64, 2613–2622. [Google Scholar] [CrossRef]
- Mao, L.; Imam, S. Extruded cornstarch-glycerol-polyvinyl alcohol blends: mechanical properties, morphology and biodegradability. J. Polym. Environ. 2000, 8, 205–211. [Google Scholar] [CrossRef]
- Fishman, M.L.; Coffin, D.R. Two stage extrusion of plasticized pectin/poly(vinyl alcohol) blends. Carbohyd. Polym. 2006, 65, 421–429. [Google Scholar] [CrossRef]
- Russo, M.A.L.; O’Sullivan, C.; Rousefell, B.; Halley, P.J.; Truss, R. The anaerobic degradability of thermoplastic starch/polyvinyl alcohol blends: potential biodegradable food packaging materials. Bioresour. Technol. 2009, 100, 1705–1710. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Im, S.S.; Kim, S.H.; Kim, Y.H. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polym. Eng. Sci. 2000, 40, 2539–2550. [Google Scholar] [CrossRef]
- Zhang, J.F.; Sun, X. Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 2004, 5, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Ouhib, R.; Renault, B.; Mouaziz, H.; Nouvel, C.; Dellacherie, E.; Six, J.L. Biodegradable amylose-g-PLA glycopolymers from renewable resources. Carbohydr. Polym. 2009. [Google Scholar] [CrossRef]
- Matzinos, P.; Tserki, V.; Kontoyiannis, A.; Panayiotou, C. Processing and characterization of starch/polycaprolactone products. Polym. Degrad. Stab. 2002, 77, 17–24. [Google Scholar] [CrossRef]
- Yavuz, H.; Babac, C. Preparation and Biodegradation of Starch/Polycaprolactone Films. J Polym Environ. 2003, 1, 107–113. [Google Scholar] [CrossRef]
- Shin, B.Y.; Lee, S.I.; Shin, Y.S.; Balakrishnan, S.; Narayan, R. Rheological, mechanical and biodegradation studies on blends thermoplastic starch and polycaprolactone. Polym. Eng. Sci. 2004, 44, 1429–1438. [Google Scholar] [CrossRef]
- Koenig, M.F.; Huang, S.J. Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 1995, 36, 1877–1882. [Google Scholar] [CrossRef]
- Bastioli, C.; Cerutti, A.; Guanella, I.; Romano, G.C.; Tosin, M. Physical state and biodegradation behavior of starch-polycaprolactone systems. J. Environ. Polym. Degr. 1995, 3, 81–95. [Google Scholar] [CrossRef]
- Ratto, J.A.; Stenhouse, P.J.; Auerbach, M.; Mitchell, J.; Farell, R. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 1999, 40, 6777–6788. [Google Scholar] [CrossRef]
- Verhoogt, H.; Ramsay, B.A.; Favis, B.D. Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer 1994, 35, 5155–5169. [Google Scholar] [CrossRef]
- Godbole, S.; Gote, S.; Laktar, M.; Chakrabarti, T. Preparation and characterization of biodegradable poly-3-hydroxubutyrate-starch blend films. Bioresour. Technol. 2003, 86, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.H.; Imam, S.H.; Shogren, R.L.; Govind, N.S.; Greene, R.V. A semi empirical model for predicting biodegradation profiles of individual polymers in starch-poly-(β-hydroxubutyrate-co-β-hydroxyvalerate) bioplastic. J. Appl. Polym. Sci. 2000, 76, 1767–1776. [Google Scholar] [CrossRef]
- Ramsay, B.A.; Langlade, V.; Carreau, P.J.; Ramsay, J.A. Biodegradability and mechanical properties of poly-(β-hydroxybutyrate-co-β-hydroxyvalearate)-starch blends. Appl. Environ. Microbiol. 1993, 59, 1242–1246. [Google Scholar] [PubMed]
- Mani, R.; Bhattacharya, M. Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur. Polym. J. 2001, 37, 515–526. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Gedon, S.C.; White, A.W.; Wood, M.D. Cellulose acetate butyrate and poly(hydroxybutyrate-co-valearate) copolymer blends. Macromolecules 1992, 25, 7373–7381. [Google Scholar] [CrossRef]
- Li, J.; Lai, M. F.; Liu, J.J. Effect of poly(propylene carbonate) on the crystallization and melting behaviour of poly poly(β-hydroxybutyrate-co-β-hydroxyvalerate). J. Appl. Polym. Sci. 2004, 92, 2514–2521. [Google Scholar] [CrossRef]
- Wang, X.Y.; Peng, S.W.; Dong, L.S. Effect of poly(vinyl acetate) (PVAc) on thermal behavior and mechanical properties of poly(3-hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blends. Coll. Polym. Sci. 2005, 284, 167–174. [Google Scholar] [CrossRef]
- Yoon, C.S.; Ji, D.S. Effects of In Vitro degradation on the weight loss and tensile properties of PLA/LPCL/HPCL blend fibers. Fiber. Polym. 2003, 4, 59. [Google Scholar] [CrossRef]
- Lee, C.M.; Kim, E.S.; Yoon, J.S. Reactive blending of poly(L-lactic acid) with poly(ethyleneco-vinyl alcohol). J. Appl. Polym. Sci. 2005, 98, 886–890. [Google Scholar] [CrossRef]
- Oyama, H.T. Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer. Polymer 2009, 50, 747–751. [Google Scholar] [CrossRef]
- Shinoda, H.; Asou, Y.; Kashima, T.; Kato, T.; Tseng, Y.; Yagi, T. Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide) : acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone). Polym. Degrad. Stab. 2003, 80, 241–250. [Google Scholar] [CrossRef]
- Little, U.; Buchanan, F.; Harkin-Jones, E.; McCaigue, M.; Farrar, D.; Dickson, G. Accelerated degradation of poly(ε-caprolactone) via melt blending with poly(aspartic acid -co-lactide) (PAL). Polym. Degrad. Stab. 2009, 94, 213–220. [Google Scholar] [CrossRef]
- Yang, A.; Wu, R.; Zhu, P. Thermal analysis and miscibility of chitin/polycaprolactone blends. J. Appl. Polym. Sci. 2001, 81, 3117–3123. [Google Scholar] [CrossRef]
- Senda, T.; He, Y.; Inoue, Y. Biodegradable blends of poly(ε-caprolactone) with chitin and chitosan: Specific interactions, thermal properties and crystallization behavior. Polym. Int. 2001, 51, 33–39. [Google Scholar] [CrossRef]
- Catro, G.; Panilaitis, B.; Kaplan, D. Emulsan tailorable biopolymer for controlled release. Bioresour. Technol. 2008, 99, 4566–4571. [Google Scholar] [CrossRef]
- Suda, K.; Wararuk, C.; Manit, S. Radiation modification of water sorption of cassava starch by acrylic acid/acrylamide. Rad. Phys. Chem. 2000, 59, 413–427. [Google Scholar] [CrossRef]
- Petersen, K.; Nielsen, P.V.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- Saad, B.; Suter, U.W. Biodegradable polymeric materials. Encyclopedia Mater. Sci. Technol. 2008, 551–555. [Google Scholar]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachence, J.M.; Bohrer, M.P.; KohnNewly, J. Biodegradable polymers. In Principles of Tissue Engineering, 3rd Ed.; Lanza, R., Langer, R., Vacanti, J., Eds.; Elsevier: Amsterdam, Netherlands, 2007; Chaptor 23; pp. 323–339. [Google Scholar]
- Rabetafika, H.N.; Paquot, M.; Dubois, P. Les polymères issus du végétal: matériaux à propriétés spécifiques pour des applications ciblées en industrie plastique. Biotechnol. Agronom. Soc. Environ. 2006, 10, 185–196. [Google Scholar]
- Yamaoka, T.; Tabata, Y.; Ikada, Y. Body distribution of intravenously administered gelatin with different molecular weights. J. Cont. Rel. 1994, 31, 1–8. [Google Scholar] [CrossRef]
- Hokugo, A.; Ozeki, M.; Kawakami, O.; Sugimoto, K.; Mushimoto, K.; Morita, S.; Tabata, Y. Potentially of gelatin hydrogel in promoting the bone repairing activity of platelet-rich plasma (PRP); An experimental study in rabbit. J. Oral. Maxillof. Surg. 2003, 61, 95–96. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitin and its derivatives: New trends of applied research. Carbohyd. Polym. 1983, 3, 53–75. [Google Scholar] [CrossRef]
- Xie, W.; Xu, P.; Liu, Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 2001, 11, 1699–1701. [Google Scholar] [CrossRef] [PubMed]
- Castagnino, E.; Ottaviani, M.F.; Cangiotti, M.; Morelli, M.; Casettari, L.; Muzzarelli, R.A.A. Radical scavenging activity of 5-methylpyrrolidinone chitosan and dibutyryl chitin. Carbohydr. Polym. 2008, 74, 640–647. [Google Scholar] [CrossRef]
- Khor, E.; Lee, Y.L. Implantable applications of chitin and chitosan. Biomaterials 2003, 24, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.F.; Martin, D.P.; Horowitz, D.M.; Peoples, O.P. PHA applications: Addressing the price performance issue. I. Tissue engineering. Int. J. Biol. Macromol. 1999, 25, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Philips, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–47. [Google Scholar] [CrossRef]
- Tiainen, J.; Veiranto, M.; Suokas, E.; Tormala, P.; waris, T.; Ninkoviv, M. Bioabsorbable ciprofloxacin-containing and plain self reinforced poly(lactide-polyglycolide) 80/20 screws: pullout strength properties in human cadaver parietal bones. J. Craniofac. Surg. 2002, 13, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Pitt, C.G. Poly(ε-caprolactone) and its copolymers. Drugs Pharm. Sci. 1990, 45, 71–120. [Google Scholar]
- Prior, T.D.; Grace, D.L.; MacLean, J.B.; Allen, P.W.; Chapman, P.G.; Day, A. Correction of hallux valgus by Mitchell’s metatarsal osteotomy: comparing standard fixation methods with absorbable polydioxanone pins. Foot 1997, 7, 121–125. [Google Scholar] [CrossRef]
- Sinclair, R.G. The case for polylactic acid as a commodity packaging plastic. J. Macromol. Sci. A 1996, 33, 585–597. [Google Scholar] [CrossRef]
- Cao, N.; Fu, Y.; He, J. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocoll. 2007, 21, 1153–1162. [Google Scholar] [CrossRef]
- Ham-Pichavant, F.; Sèbe, G.; Pardon, P.; Coma, V. Fat resistance properties of chitosan-based paper packaging for food applications. Carbohyd. Polym. 2005, 61, 259–265. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Rosa, D.S.; Lotto, N.T.; Lopes, D.R.; Guedes, C.G.F. The use of roughness for evaluation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Testing 2004, 23, 3–8. [Google Scholar] [CrossRef]
- Bucci, D.Z.; Tavares, L.B.B.; Sell, I. PHB packaging for the storage of food products. Polym. Testing 2005, 24, 564–571. [Google Scholar] [CrossRef]
- Chiellini, E.; Chiellini, F.; Cinelli, P.; Ilieva, V. Bio-based polymeric materials for agriculture applications. In Biodegradable polymers and plastics; Chiellini, E., Solaro, R., Eds.; Kluwer Academic/Plenum Publishers: New York, USA, 2003; pp. 185–220. [Google Scholar]
- Mazollier, C.; Taullet, A. Paillages et ficelles biodégradables : une alternative pour le maraîchage bio. Alter. Agric. 2003, 59, 10–13. [Google Scholar]
- Steiner, P.R. Biobased,biodegradable geotextiles USDA forest service research update. In Proceedings of the 2nd Pacific Rim bio-based composites symposium, 6-9 November 1994; University of British Columbia: Vancouver, Canada, 1994; pp. 204–212. [Google Scholar]
- Asrar; Gruys, K.J. Biodegradable polymers (Biopol). In Biopolymers, vol 4. Polyesters III. Application and commercial products; Doi, Y., Steinbüchel, A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 53–81. [Google Scholar]
- Lammers, P.; Kromer, K. Competitive natural fiber used in composite materials for automotive parts. In Proceeding of 2002 Annual International Meeting, ASAE Paper, Chicago, USA, 2002; ASABE: St. Joseph, Michigan, USA, 2002. No. 026167. [Google Scholar]
- Vink, E.T.H.; Rabago, K.R.; Glassner, D.A.; Springs, B.; O’Connor, R.P.; Kolstad, J.; Gruber, P.R. The sustainability of natureworksTM polylactide polymers and ingeoTM polylactides fibers: an update of the future. Macromol. Biosci. 2004, 4, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Agullo, E.; Rodriguez, M.S.; Ramos, V.; Albertengo, L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 2003, 3, 521–530. [Google Scholar] [CrossRef]
© 2009 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307-344. https://doi.org/10.3390/ma2020307
Vroman I, Tighzert L. Biodegradable Polymers. Materials. 2009; 2(2):307-344. https://doi.org/10.3390/ma2020307
Chicago/Turabian StyleVroman, Isabelle, and Lan Tighzert. 2009. "Biodegradable Polymers" Materials 2, no. 2: 307-344. https://doi.org/10.3390/ma2020307