Raman Spectroscopy and X-Ray Diffraction Investigations of Phase Composition of Tiglit Meteorite
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. SEM–EDS Measurements
3.2. Raman Spectroscopy Measurements
3.3. XRD Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chennaoui Aoudjehane, H.; Agee, C.B.; Aoudjehane, M.; Zennouri, L. TIGLIT: Aubrite Meteorite Fall in Morocco in December 2021. In Proceedings of the 85th Annual Meeting of the Meteoritical Society; LPI Contribution No. 2695; Lunar and Planetary Institute: Houston, TX, USA, 2022; Abstract #6352. [Google Scholar]
- Hoffmann, V.H.; Mikouchi, T.; Kaliwoda, M. Systematic Micro Raman Spectroscopy on the Ribbeck (Fall 2024) and Tiglit (Fall 2021) Aubrites. In Proceedings of the 56th Lunar and Planetary Science Conference, Houston, TX, USA, 12–14 March 2025; Lunar and Planetary Institute: Houston, TX, USA, 2025; Abstract #2397. [Google Scholar]
- Barrat, J.A.; Greenwood, R.C.; Keil, K.; Rouget, M.L.; Boesenberg, J.S.; Zanda, B.; Franchi, I.A. The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions. Geochim. Cosmochim. Acta 2016, 192, 29–48. [Google Scholar] [CrossRef]
- Stöffler, D.; Hamann, C.; Metzler, K. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci. 2018, 53, 5–49. [Google Scholar] [CrossRef]
- Grady, M.M.; Pratesi, G.; Moggi Cecchi, V. Atlas of Meteorites; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Gilmour, J.D.; Pravdivtseva, O.V.; Busfield, A.; Hohenberg, C.M. The I-Xe chronometer and the early solar system. Meteorit. Planet. Sci. 2006, 41, 19–31. [Google Scholar] [CrossRef]
- Keil, K. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Geochemistry 2010, 70, 295–317. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Eugster, O.; Busemann, H.; Marti, K.; Burbine, T.H.; McCoy, T.J. History and origin of aubrites. Geochim. Cosmochim. Acta 2003, 67, 557–571. [Google Scholar] [CrossRef]
- Kołodziej, M.; Michalska, D.; Załęski, K.; Iatsunskyi, I.; Muszyński, A.; Coy, E. A closer look into the structure and magnetism of the recently fallen meteorite Ribbeck. Sci. Rep. 2025, 15, 6866. [Google Scholar] [CrossRef]
- Bischoff, A.; Patzek, M.; Barrat, J.-A.; Berndt, J.; Busemann, H.; Degering, D.; Di Rocco, T.; Ek, M.; Harries, D.; Godinho, J.R.A.; et al. Cosmic pears from the Havelland (Germany): Ribbeck, the twelfth recorded aubrite fall in history. Meteorit. Planet. Sci. 2024, 59, 2660–2694. [Google Scholar] [CrossRef]
- Dudek, M.; Grabarczyk, J.; Jakubowski, T.; Zareba, P.; Karczemska, A. Raman Spectroscopy Investigations of Ribbeck Meteorite. Materials 2024, 17, 5105. [Google Scholar] [CrossRef] [PubMed]
- Población, I.; Torre-Fdez, I.; Aramendia, J.; López-Reyes, G.; Cabalín, L.M.; Madariaga, J.M.; Rull, F.; Laserna, J.J.; Carrizo, D.; Martínez-Frías, J.; et al. Raman spectroscopy, assisted by X-ray fluorescence and laser-induced breakdown spectroscopy, to characterize original and altered mineral phases in the NWA 2975 Martian shergottite. J. Raman Spectrosc. 2023, 54, 1233–1247. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Hoatson, D.M. Raman Spectroscopic Study of Pyroxene Structures from the Munni Munni Layered Intrusion, Western Australia. J. Raman Spectrosc. 1997, 28, 647–658. [Google Scholar] [CrossRef]
- Mouri, T.; Enami, M. Raman spectroscopic study of olivine-group minerals. J. Mineral. Petrol. Sci. 2008, 103, 100–104. [Google Scholar] [CrossRef]
- Breitenfeld, L.B.; Dyar, M.D.; Carey, C.J.; Tague, T.J.; Wang, P.; Mullen, T.; Parente, M. Predicting olivine composition using Raman spectroscopy through band shift and multivariate analyses. Am. Mineral. 2018, 103, 1827–1836. [Google Scholar] [CrossRef]
- Kichanov, S.E.; Kozlenko, D.P.; Kirillov, A.K.; Lukin, E.V.; Abdurakhimov, B.; Belozerova, N.M.; Rutkauskas, A.V.; Ivankina, T.I.; Savenko, B.N. A structural insight into the Chelyabinsk meteorite: Neutron diffraction, tomography and Raman spectroscopy study. SN Appl. Sci. 2019, 1, 1563. [Google Scholar] [CrossRef]
- Musa, M.; Rossini, R.; Di Martino, D.; Riccardi, M.P.; Clemenza, M.; Gorini, G. Combining Micro-Raman Spectroscopy and Scanning Electron Microscopy Mapping: A Stony Meteorite Study. Materials 2021, 14, 7585. [Google Scholar] [CrossRef] [PubMed]
- Zucker, R.; Shim, S.-H. In situ Raman Spectroscopy of MgSiO3 Enstatite up to 1550 K. Am. Mineral. 2009, 94, 1638–1646. [Google Scholar] [CrossRef]
- Zhang, B.; Shieh, S.; Withers, A.; Bouvier, A. Raman spectroscopy of shocked enstatite-rich meteorites. Meteorit. Planet. Sci. 2018, 53, 2067–2077. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Kim, Y.; Caumon, M.-C.; Barres, O.; Sall, A.; Cauzid, J. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochim. Acta 2021, 261, 119980. [Google Scholar] [CrossRef]
- Prieto-delaVega, I.; García-Florentino, C.; Torre-Fdez, I.; Huidobro, J.; Aramendia, J.; Arana, G.; Castro, K.; Madariaga, J.M. Original and alteration mineral phases in the NWA 10628 Martian shergottite determined by micro-Raman spectroscopy assisted with micro-energy dispersive X-ray fluorescence imaging. J. Raman Spectrosc. 2022, 53, 435–449. [Google Scholar] [CrossRef]
- Popp, J.; Tarcea, N.; Kiefer, W.; Hilchenbach, M.; Thomas, N.; Stuffler, T.; Hofer, S.; Stoffler, D.; Greshake, A. The Effect of Surface Texture on the Mineralogical Analysis of Chondritic Meteorites Using Raman Spectroscopy. Planet. Space Sci. 2002, 50, 865–870. [Google Scholar] [CrossRef]
- Sharma, S.K.; Lucey, P.G.; Ghosh, M.; Hubble, H.W.; Horton, K.A. Stand-off Raman Spectroscopic Detection of Minerals on Planetary Surfaces. Spectrochim. Acta 2003, 59, 2391–2407. [Google Scholar] [CrossRef]
- Wesełucha-Birczynska, A.; Zmudzka, M. Micro-Raman spectroscopy characterization of selected meteorites. J. Mol. Struct. 2008, 887, 253–261. [Google Scholar] [CrossRef]
- Righter, K.; Abell, P.; Agresti, D.; Berger, E.L.; Burton, A.S.; Delaney, J.S.; Fries, M.D.; Gibson, E.K.; Haba, M.K.; Harrington, R.; et al. Mineralogy, Petrology, Chronology, and Exposure History of the Chelyabinsk Meteorite and Parent Body. Meteorit. Planet. Sci. 2015, 50, 1790–1819. [Google Scholar] [CrossRef]
- Bersani, D.; Aliatis, I.; Tribaudino, M.; Mantovani, L.; Benisek, A.; Carpenter, M.; Gatta, G.; Lottici, P.P. Plagioclase Composition by Raman Spectroscopy. J. Raman Spectrosc. 2018, 49, 684–698. [Google Scholar] [CrossRef]
- Freeman, J.J.; Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haskin, L.A. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 2008, 46, 1477–1500. [Google Scholar] [CrossRef]
- Huidobro, J.; Aramendia, J.; García-Florentino, C.; Ruiz-Galende, P.; Torre-Fdez, I.; Castro, K.; Arana, G.; Madariaga, J.M. Mineralogy of the RBT 04262 Martian meteorite as determined by micro-Raman and micro-X-ray fluorescence spectroscopies. J. Raman Spectrosc. 2022, 53, 450–462. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Spectrochim. Acta 2005, 61, 1721. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation. J. Raman Spectrosc. 2003, 34, 845–852. [Google Scholar] [CrossRef]
- Slavov, L.; Abrashev, M.V.; Merodiiska, T.; Gelev, C.; Vandenberghe, R.E.; Markova-Deneva, I.; Nedkov, I. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J. Magn. Magn. Mater. 2010, 332, 1904–1911. [Google Scholar] [CrossRef]
- Niemiec, T.; Dudek, M.; Dziekan, N.; Jaworski, S.; Przewozik, A.; Soszka, E.; Koperkiewicz, A.; Koczoń, P. The Method of Coating Fe3O4 with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured In Vitro. J. AOAC Int. 2017, 100, 905–915. [Google Scholar] [CrossRef]
- Ling, Z.C.; Wang, A.; Jolliff, B.L. Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus 2011, 211, 101–113. [Google Scholar] [CrossRef]
- Weber, I.; Pavlov, S.G.; Böttger, U.; Reitze, M.P. Alteration in the Raman spectra of characteristic rock-forming silicate mixtures due to micrometeorite bombardment. J. Raman Spectrosc. 2024, 55, 901–913. [Google Scholar] [CrossRef]
- Maruyama, Y.; Hanada, Y.; Kinami, K.; Nagao, M.; Watauchi, S.; Takahashi, H.; Ohgaki, M.; Tanaka, I. Synthesis and thermal behavior of single-phase tridymite. J. Asian Ceram. Soc. 2025, 13, 284–290. [Google Scholar] [CrossRef]
- Venkateswaran, C.S. The Raman spectra of sulphur and phosphorus. Proc. Indian Acad. Sci. Sect. A 1936, 3, 345–354. [Google Scholar] [CrossRef]
- McAuliffe, R.D.; Petrova, V.; McDermott, M.J.; Tyler, J.L.; Self, E.C.; Persson, K.A.; Liu, P.; Veith, G.M. Synthesis of model sodium sulfide films. J. Vac. Sci. Technol. A 2021, 39, 053404. [Google Scholar] [CrossRef]
- Avril, C.; Malavergne, V.; Caracas, R.; Zanda, B.; Reynard, B.; Charon, E.; Bobocioiu, E.; Brunet, F.; Borensztajn, S.; Pont, S.; et al. Raman spectroscopic properties and Raman identification of CaS-MgS-MnS-FeS-Cr2FeS4 sulfides in meteorites and reduced sulfur-rich systems. Meteorit. Planet. Sci. 2013, 48, 1415–1426. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Yu, F.; Novakova, A.A.; Krivenkov, M.S.; Kiseleva, T.Y.; Chang, L.; Rao, J.; Polyakov, A.O.; Blake, G.R.; et al. High-Purity Fe3S4 Greigite Microcrystals for Magnetic and Electrochemical Performance. Chem. Mater. 2014, 26, 5821–5829. [Google Scholar] [CrossRef]
- Wang, A.; Kuebler, K.; Jolliff, B.; Haskin, L. Mineralogy of a Martian meteorite as determined by Raman spectroscopy. J. Raman Spectrosc. 2004, 35, 504–514. [Google Scholar] [CrossRef]
- Karczemska, A.; Szurgot, M.; Kozanecki, M.; Szynkowska-Jóźwik, M.J.; Ralchenko, V.; Danilenko, V.V.; Louda, P.; Mitura, S.F. Extraterrestrial, terrestrial and laboratory diamonds—Differences and similarities. Diam. Relat. Mater. 2008, 17, 1179–1185. [Google Scholar] [CrossRef]
- Karczemska, A.; Jakubowski, T.; Kozanecki, M. Raman Spectroscopy Studies of Diamond and Graphite Phases in JAH 054 Ureilite. Meteorit. Planet. Sci. 2009, 44, A105. [Google Scholar]
- Jakubowski, T.; Kozanecki, M.; Ott, U.; Karczemska, A. Raman Spectroscopy Investigations of Tagish Lake Nanodiamonds. Meteorit. Planet. Sci. 2011, 46, A112. [Google Scholar]
- Okada, A.; Keil, K.; Taylor, G.J. Unusual Weathering Products of Oldhamite Parentage in the Norton County Enstatite Achondrite. Meteoritics 1981, 16, 141–152. [Google Scholar] [CrossRef]
- Reitze, M.P.; Renggli, C.J.; Morlok, A.; Weber, I.; Hiesinger, H.; Stojic, A.N.; Pasckert, J.H.; Bauch, K.E.; Schmedemann, N.; Helbert, J. Infrared Spectra of the Sulfide Solid Solution Between Oldhamite and Niningerite (CaS-MgS): A Complex Case in the Laboratory. In Proceedings of the 55th Lunar and Planetary Science Conference; Lunar and Planetary Institute: Houston, TX, USA, 2024; Abstract #1858. [Google Scholar]
- Rosenshein, E.B.; Ivanova, M.A.; Dickinson, T.L.; McCoy, T.J.; Lauretta, D.S.; Guan, Y.; Leshin, L.A.; Benedix, G.K. Oxide-bearing and FeO-rich clasts in aubrites. Meteorit. Planet. Sci. 2006, 41, 495–503. [Google Scholar] [CrossRef]
- Casanova, I.; McCoy, T.; Keil, K. Metal-rich meteorites from the aubrite parent body. In Proceedings of the 24th Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1993; p. 259. [Google Scholar]
- Neha, N.; Natrajan, S.; Marhas, K. Spectroscopic Investigation of Insoluble Organic Matter in Aubrites and Enstatite Chondrites. J. Geophys. Res. Planets 2025, 130, e2025JE009101. [Google Scholar] [CrossRef]










| Number | Atomic % of Element | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C | N | O | Na | Mg | Al | Si | S | Fe | Cu | Ti | Cl | K | Ca | |
| measurements on the surface in area A | ||||||||||||||
| A0 | 10.80 | 46.60 | 12.6 | 0.80 | 13.70 | 7.00 | 7.90 | |||||||
| A1 | 18.09 | - | 21.33 | - | 0.79 | - | 1.08 | 9.09 | 49.61 | - | - | - | - | - |
| A2 | 15.69 | - | 28.70 | - | 3.23 | 0.53 | 2.94 | 7.18 | 41.72 | - | - | - | - | - |
| A3 | 12.90 | - | 34.72 | - | 2.75 | 1.91 | 5.53 | 12.39 | 29.8 | - | - | - | - | - |
| A4 | - | - | 59.79 | 7.19 | 0.45 | 8.48 | 24.09 | - | - | - | - | - | - | - |
| A5 | 11.55 | - | 61.67 | - | 14.48 | 0.41 | 11.90 | - | - | - | - | - | - | - |
| measurements on the surface in area B | ||||||||||||||
| B0 | 17.10 | 44.10 | 11.5 | 0.6 | 11.9 | 6.8 | 8.0 | |||||||
| B1 | 12.63 | - | 29.36 | - | 7.08 | - | 7.04 | 19.92 | 23.57 | 0.41 | - | - | - | - |
| B2 | 27.02 | - | 22.90 | - | 1.46 | - | 1.91 | 9.9 | 36.81 | - | - | - | - | - |
| B3 | 16.20 | - | 30.20 | - | 6.43 | 0.60 | 5.65 | 14.86 | 26.06 | - | - | - | - | - |
| B4 | 8.72 | - | 59.99 | - | 14.75 | 0.87 | 15.28 | 0.40 | - | - | - | - | - | - |
| B5 | - | - | 52.55 | - | 23.33 | - | 24.12 | - | - | - | - | - | - | - |
| measurements on the surface in area C | ||||||||||||||
| C0 | 16.06 | - | 11.07 | - | - | - | - | 21.04 | 51.82 | - | - | - | - | - |
| C1 | - | - | 46.8 | - | 12.77 | 0.37 | 11.93 | 11.37 | 16.75 | - | - | - | - | - |
| C2 | 13.97 | - | 38.55 | - | 9.71 | - | 9.63 | 10.9 | 17.24 | - | - | - | - | - |
| C3 | - | - | 59.31 | - | 19.79 | - | 20.90 | - | - | - | - | - | - | - |
| C4 | 62.20 | - | 29.87 | 0.98 | 1.67 | 1.09 | 3.36 | 0.58 | - | - | - | 0.25 | - | - |
| C5 | 35.25 | - | 31.71 | - | 4.63 | - | 4.01 | 0.40 | - | - | 24.00 | - | - | - |
| measurements on the surface in area D | ||||||||||||||
| D0 | 16.28 | - | 24.61 | - | 1.27 | 2.99 | 5.92 | 22.58 | 26.35 | - | - | - | - | - |
| D1 | 25.61 | - | 24.36 | - | - | - | 1.87 | 14.10 | 34.05 | - | - | - | - | - |
| D2 | 15.27 | - | 50.58 | - | 15.84 | 0.90 | 17.41 | - | - | - | - | - | - | - |
| D3 | 72.24 | - | 11.50 | 0.78 | - | - | - | 0.88 | - | - | 13.4 | 1.21 | - | - |
| D4 | 59.35 | 9.37 | 17.67 | - | 1.20 | - | 0.89 | 0.51 | - | - | 10.79 | 0.22 | - | - |
| D5 | 53.79 | 6.56 | 29.45 | 0.38 | 3.75 | 0.44 | 4.24 | 0.22 | 0.47 | - | - | 0.22 | 0.26 | 0.23 |
| powder measurements | ||||||||||||||
| P1 | 23.66 | - | 54.33 | 6.83 | - | 7.29 | 0.29 | 0.13 | - | - | - | 7.46 | ||
| P2 | 18.95 | - | 55.82 | 0.84 | 7.62 | - | 8.17 | 0.42 | - | - | - | - | - | 8.18 |
| P3 | 23.88 | - | 54.48 | 6.81 | - | 7.07 | 0.23 | 0.10 | - | - | - | - | 7.43 | |
| P4 | 30.37 | - | 48.53 | 0.71 | 6.46 | 0.47 | 6.62 | - | - | - | - | - | 6.85 | |
| P5 | 23.80 | - | 54.49 | 6.77 | - | 7.08 | 0.26 | 0.10 | 0.04 | - | - | - | 7.42 | |
| P6 | 29.10 | - | 50.14 | 0.75 | 6.24 | 0.43 | 6.38 | 0.24 | 0.09 | 0.05 | - | - | - | 6.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Karczemska, A.; Dudek, M.; Januszewicz, B.; Jakubowski, T.; Mitura, S. Raman Spectroscopy and X-Ray Diffraction Investigations of Phase Composition of Tiglit Meteorite. Materials 2026, 19, 624. https://doi.org/10.3390/ma19030624
Karczemska A, Dudek M, Januszewicz B, Jakubowski T, Mitura S. Raman Spectroscopy and X-Ray Diffraction Investigations of Phase Composition of Tiglit Meteorite. Materials. 2026; 19(3):624. https://doi.org/10.3390/ma19030624
Chicago/Turabian StyleKarczemska, Anna, Mariusz Dudek, Bartłomiej Januszewicz, Tomasz Jakubowski, and Stanisław Mitura. 2026. "Raman Spectroscopy and X-Ray Diffraction Investigations of Phase Composition of Tiglit Meteorite" Materials 19, no. 3: 624. https://doi.org/10.3390/ma19030624
APA StyleKarczemska, A., Dudek, M., Januszewicz, B., Jakubowski, T., & Mitura, S. (2026). Raman Spectroscopy and X-Ray Diffraction Investigations of Phase Composition of Tiglit Meteorite. Materials, 19(3), 624. https://doi.org/10.3390/ma19030624

