A Micromechanics-Based Anisotropic Constitutive Model for Sand Incorporating the True Stress Tensor
Abstract
1. Introduction
2. The True Stress Tensor in Anisotropic Sand
2.1. Definition of the Fabric Tensor
2.2. Derivation of the True Stress Tensor
3. Formulation of the Micromechanical Constitutive Model
3.1. Elastic Behaviors
3.2. Yield Surface
3.3. Stress–Dilatancy Relationship
3.4. Harding Rule
3.5. Fabric Evolution
3.6. Critical State
3.7. Incremental Constitutive Relations
4. Parameter Determination and Discussion
4.1. Parameter Determination and Sensitivity Analysis
4.2. Analysis of Strength Anisotropy Under Varying Loading Directions
5. Comparisons with Experimental Data and Numerical Simulations
5.1. Validation Against Drained Triaxial Tests on Ottawa Sand
5.2. Validation Against True Triaxial Numerical Tests
5.3. Validation Against Effects of Inherent Anisotropy on Toyoura Sand
5.4. Validation Against Stress–Dilatancy Relationships in True Triaxial DEM Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y. Anisotropic strength criteria of sand: Stress-induced anisotropy. Chin. J. Geotech. Eng. 2013, 35, 460–468. [Google Scholar]
- Liu, Y. Anisotropic strength criteria of sand: Inherent anisotropy. Chin. J. Geotech. Eng. 2013, 35, 1526–1534. [Google Scholar]
- Pietruszczak, S.; Mroz, Z. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 509–524. [Google Scholar] [CrossRef]
- Pietruszczak, S.; Mroz, Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput. Geotech. 2000, 26, 105–112. [Google Scholar] [CrossRef]
- Liu, M.D.; Indraratna, B.N. General strength criterion for geomaterials including anisotropic effect. Int. J. Geomech. 2011, 11, 251–262. [Google Scholar] [CrossRef]
- Matsuoka, H.; NaKai, T. Stress-deformation and strength characteristics of soil under three different principal stresses. In Proceedings of the Japan Society of Civil Engineers; Japan Society of Civil Engineers: Tokyo, Japan, 1974; Volume 1974, pp. 59–70. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Yang, G. Formulation of cross-anisotropic failure criterion for granular material. Int. J. Geomech. 2012, 12, 182–188. [Google Scholar] [CrossRef]
- Schweiger, H.F.; Wiltafsky, C.; Scharinger, F.; Galavi, V. A multilaminate framework for modelling induced and inherent anisotropy of soils. Géotechnique 2009, 59, 87–101. [Google Scholar] [CrossRef]
- Cao, W.; Wang, R.; Zhang, J.M. Formulation of anisotropic strength criteria for cohesionless granular materials. Int. J. Geomech. 2017, 17, 4016151. [Google Scholar] [CrossRef]
- Li, X.S.; Dafalias, Y.F. Constitutive Modeling of Inherently Anisotropic Sand Behavior. J. Geotech. Geoenviron. Eng. 2002, 128, 868–880. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Gao, Z. Anisotropic UH model for soils based on a simple transformed stress method. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 54–78. [Google Scholar] [CrossRef]
- Bayraktaroglu, H.; Hicks, M.A.; Korff, M.; Galavi, V. A state-dependent multilaminate constitutive model for anisotropic sands. Géotechnique 2024, 74, 1343–1359. [Google Scholar] [CrossRef]
- Bayraktaroglu, H.; Korff, M.; Hicks, M.A. An anisotropic semi-micromechanical cyclic constitutive model for sands. Comput. Geotech. 2026, 191, 107772. [Google Scholar] [CrossRef]
- Veiskarami, M.; Azar, E.; Habibagahi, G. A rational hypoplastic constitutive equation for anisotropic granular materials incorporating the microstructure tensor. Acta Geotech. 2023, 18, 1233–1253. [Google Scholar] [CrossRef]
- Yu, J.; Cao, J.; Chen, Z.; Zhu, J.; Zhang, Y.; Yu, P. Hypoplastic modeling of soil–structure contact surface considering initial anisotropy and roughness. Appl. Sci. 2024, 15, 244. [Google Scholar] [CrossRef]
- Chang, C.S.; Gao, J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech. 1996, 115, 213–229. [Google Scholar] [CrossRef]
- Gu, X.; Liang, X.; Hu, J. Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: A numerical investigation. Géotechnique 2024, 74, 1263–1275. [Google Scholar] [CrossRef]
- Duffy, J.; Mindlin, R.D. Stress-strain relations and vibrations of a granular medium. J. Appl. Mech. 1957, 24, 585–593. [Google Scholar] [CrossRef]
- Chang, C.S.; Hicher, P.Y. An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 2005, 42, 4258–4277. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, C.S. Relationship between element-level and contact-level parameters of micromechanical and upscaled plasticity models for granular soils. Acta Geotech. 2020, 15, 1779–1798. [Google Scholar] [CrossRef]
- Tian, J.; Lai, Y.; Liu, E.; Yang, Y. A micromechanics-based elasto-plastic model for granular media combined with cosserat continuum theory. Acta Geotech. 2022, 17, 2259–2285. [Google Scholar] [CrossRef]
- Wang, H.L.; Gu, X.; Yin, Z.Y.; Zhao, C.F. Integration of critical state theory into a micromechanical model for granular materials accounting for fabric evolution. Comput. Geotech. 2025, 186, 107379. [Google Scholar] [CrossRef]
- Nicot, F.; Darve, F. The H-microdirectional model: Accounting for a mesoscopic scale. Mech. Mater. 2011, 43, 918–929. [Google Scholar] [CrossRef]
- Xiong, H.; Nicot, F.; Yin, Z. On the three-dimensional extension of the micromechanically-based h-model. In Bifurcation and Degradation of Geomaterials with Engineering Applications; Papamichos, E., Papanastasiou, P., Pasternak, E., Dyskin, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 427–432. [Google Scholar]
- Miot, M.; Wautier, A.; Polfer, P.; Philippe, P.; Fülöp, T.; Nicot, F. Mechanics of densely packed snow across scales: A constitutive modelling strategy based on the 3-D H-model. J. Glaciol. 2025, 71, e62. [Google Scholar] [CrossRef]
- Rothenburg, L.; Bathurst, R.J. Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique 1992, 42, 79–95. [Google Scholar] [CrossRef]
- Pouragha, M.; Wan, R. μ-GM: A purely micromechanical constitutive model for granular materials. Mech. Mater. 2018, 126, 57–74. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y. Micromorphic modeling of wave propagation in granular materials: Considering particle nonaffine micro-deformation and kinematics decomposition. Powder Technol. 2022, 411, 117919. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y. Dispersion of particle spin waves in granular materials: Micromorphic modeling and DEM simulation. Comput. Geotech. 2025, 179, 106988. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, J.; Wu, M. Data-driven constitutive modelling of granular soils considering multiscale particle morphology. Comput. Geotech. 2023, 162, 105699. [Google Scholar] [CrossRef]
- Li, X.; Wang, J. Predicting constitutive behaviour of idealized granular soils using recurrent neural networks. Appl. Sci. 2025, 15, 9495. [Google Scholar] [CrossRef]
- Oda, M. Fabric tensor for discontinuous geological materials. Soils Found. 1982, 22, 96–108. [Google Scholar] [CrossRef]
- Hardin, B.O.; Drnevich, V.P. Shear modulus and damping in soils: Design equations and curves. J. Soil Mech. Found. Div. 1972, 98, 667–692. [Google Scholar] [CrossRef]
- Jenkins, J.T.; Strack, O.D.L. Mean-field inelastic behavior of random arrays of identical spheres. Mech. Mater. 1993, 16, 25–33. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Wang, X.; Yu, P.; Hu, W. Anisotropic strength of granular material considering fabric evolution. Lat. Am. J. Solids Struct. 2019, 16, e174. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, P.; Zhang, D.; Wang, X. Micromechanics-based stress-dilatancy relationship for granular materials. Chin. J. Geotech. Eng. 2021, 43, 1816–1824. [Google Scholar] [CrossRef]
- Guo, P.J.; Stolle, D.F.E. The extension of rowe’s stress-dilatancy model to general stress condition. Soils Found. 2004, 44, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.D. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. Lond. A Math. Phys. Sci. 1990, 430, 105–131. [Google Scholar] [CrossRef]
- Wang, R.; Cao, W.; Zhang, J.M. Dependency of dilatancy ratio on fabric anisotropy in granular materials. J. Eng. Mech. 2019, 145. [Google Scholar] [CrossRef]
- Kandasami, R.K.; Murthy, T.G. Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands. Granul. Matter 2015, 17, 217–230. [Google Scholar] [CrossRef]
- Regier, K. The Stress-Dilatancy Behaviour of Sands: Pressure and Density Dependencies in Both Monotonic and Cyclic Loading Regimes. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 1997. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, A.; Shen, Z. Granular soils: From DEM simulation to constitutive modeling. Acta Geotech. 2020, 15, 1723–1744. [Google Scholar] [CrossRef]
- Lam, W.K.; Tatsuoka, F. Effects of initial anisotropic fabric and on strength and deformation characteristics of sand. Soils Found. 1988, 28, 89–106. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, C.; Du, X.; Wang, G.; Lu, D. True triaxial experimental research on shear behaviors of sand under different intermediate principal stresses and different stress paths. J. Hydraul. Eng. 2015, 46, 1072–1079. [Google Scholar] [CrossRef]
- Oda, M.; Koishikawa, I.; Higuchi, T. Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found. 1978, 18, 25–38. [Google Scholar] [CrossRef]
- Wang, R.; Dafalias, Y.F.; Fu, P.; Zhang, J.M. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM. Int. J. Solids Struct. 2020, 188–189, 210–222. [Google Scholar] [CrossRef]
















| Parameter Group | Symbols |
|---|---|
| Elasticity parameters | |
| Critical state parameters | |
| Strength and hardening parameters | |
| Dilatancy parameters | |
| Fabric evolution parameters |
| Parameter Type | Parameter | Ottawa Sand [41] | DEM Simulation [42] | Toyoura Sand [43] |
|---|---|---|---|---|
| Elasticity parameters | (MPa) | 2.75 | 0.5 | 2.5 |
| 2.17 | 2.97 | 2.17 | ||
| 0.29 | 0.29 | 0.29 | ||
| Critical state parameters | 0.74 | 0.86 | 1.12 | |
| (MPa) | 2867 | 71.81 | 17 | |
| 0.232 | 0.74 | 0.82 | ||
| Yield surface parameters | m | 0.581 | 0.581 | 0.5 |
| Hardening parameters | 2.3 | 2 | 0.8 | |
| (°) | 32 | 30 | 30 | |
| Dilatancy parameters | 0.007 | 0.007 | 0.005 | |
| 1.5 | 2.0 | 2.5 | ||
| 0.74 | 0.7 | 0.8 | ||
| Fabric parameters | 1/3 | 0.34 | 0.36 | |
| 1/3 | 0.33 | 0.32 | ||
| 1/3 | 0.33 | 0.32 | ||
| 0.1 | 0.1 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, P.; Baoyin, H.; Wu, K.; Yang, H. A Micromechanics-Based Anisotropic Constitutive Model for Sand Incorporating the True Stress Tensor. Materials 2026, 19, 323. https://doi.org/10.3390/ma19020323
Yu P, Baoyin H, Wu K, Yang H. A Micromechanics-Based Anisotropic Constitutive Model for Sand Incorporating the True Stress Tensor. Materials. 2026; 19(2):323. https://doi.org/10.3390/ma19020323
Chicago/Turabian StyleYu, Pengqiang, Hexige Baoyin, Kejia Wu, and Haibin Yang. 2026. "A Micromechanics-Based Anisotropic Constitutive Model for Sand Incorporating the True Stress Tensor" Materials 19, no. 2: 323. https://doi.org/10.3390/ma19020323
APA StyleYu, P., Baoyin, H., Wu, K., & Yang, H. (2026). A Micromechanics-Based Anisotropic Constitutive Model for Sand Incorporating the True Stress Tensor. Materials, 19(2), 323. https://doi.org/10.3390/ma19020323

