Preparation and Characterization of Oxide Coatings with LDH Nanosheets on AZ91 Magnesium Alloy by a One-Step Low Voltage Microarc Oxidation Process
Abstract
1. Introduction
2. Experiment
2.1. Materials
2.2. MAO Coating Preparation
2.3. Characterization
2.4. Corrosion Test
3. Results and Discussion
3.1. Characteristics of Low-Voltage MAO Processes
3.2. Microstructure and Compositions of Coatings
3.3. Coating Performance Evaluation
3.3.1. Hydrophobic Effect
3.3.2. Corrosion Resistance
4. Conclusions
- Mg-Al LDHs with hydroxides were formed in situ on Mg alloy under low voltage conditions with a high concentration of NaOH electrolyte and the addition of C3H8O3.
- The necessary species for the formation of the Mg-Al LDHs include Mg2+, Al3+, and OH−. Mg2+ and Al3+ are derived from the AZ91 Mg alloy substrate, while OH− is provided by the alkaline electrolyte. Introducing C3H8O3 into the electrolyte enhances the surface reaction and facilitates the formation of Mg-Al LDHs. The optimal concentration of C3H8O3 is 15 mL/L.
- The MAO coating with Mg–Al–LDHs on AZ91 magnesium alloy originally exhibited hydrophilicity and transformed into a nearly superhydrophobic state after surface modification by stearic acid.
- The MAO coating with Mg–Al–LDHs on AZ91 magnesium alloy showed enhanced corrosion resistance. After surface modification, the corrosion current density (icorr) decreased by 6 orders of magnitude, indicating a significant improvement in corrosion protection.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atrens, A.; Song, G.-L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Li, G.Y.; Lian, J.S.; Niu, L.Y.; Jiang, Z.H.; Jiang, Q. Growth of Zinc Phosphate Coatings on AZ91D Magnesium Alloy. Surf. Coat. Technol. 2006, 201, 1814–1820. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and Advances in Magnesium Alloy Corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Heakal, F.E.-T.; Fekry, A.M.; Jibril, M.A.E.-B. Electrochemical Behaviour of the Mg Alloy AZ91D in Borate Solutions. Corros. Sci. 2011, 53, 1174–1185. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Arrabal, R.; Viejo, F.; Matykina, E. Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 Wt.% NaCl. Corros. Sci. 2008, 50, 823–834. [Google Scholar] [CrossRef]
- Yeganeh, M.; Mohammadi, N. Superhydrophobic Surface of Mg Alloys: A Review. J. Magnes. Alloys 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Liu, H.; Huang, G.; Jiang, B.; Atrens, A.; Pan, F. Microstructure and Corrosion Behavior of Mg-Sc Binary Alloys in 3.5 Wt.% NaCl Solution. Corros. Sci. 2020, 174, 108831. [Google Scholar] [CrossRef]
- Wu, G.; Ibrahim, J.M.; Chu, P.K. Surface Design of Biodegradable Magnesium Alloys—A Review. Surf. Coat. Technol. 2013, 233, 2–12. [Google Scholar] [CrossRef]
- Lin, E.; Li, X.; Kure-Chu, S.-Z.; Li, X.; Xiao, X. Effect of Electrical Parameters on the Microstructure and Corrosion Resistance of Anodized Film of Mg-1Zn-1Gd Alloy Based on Orthogonal Experiment Method. J. Mater. Eng. Perform. 2024, 33, 5049–5060. [Google Scholar] [CrossRef]
- Duan, G.; Yang, L.; Liao, S.; Zhang, C.; Lu, X.; Yang, Y.; Zhang, B.; Wei, Y.; Zhang, T.; Yu, B.; et al. Designing for the Chemical Conversion Coating with High Corrosion Resistance and Low Electrical Contact Resistance on AZ91D Magnesium Alloy. Corros. Sci. 2018, 135, 197–206. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, S.; Yu, B.; Lu, X.; Chen, X.-B.; Zhang, T.; Wang, F. Ratio of Total Acidity to pH Value of Coating Bath: A New Strategy towards Phosphate Conversion Coatings with Optimized Corrosion Resistance for Magnesium Alloys. Corros. Sci. 2019, 150, 279–295. [Google Scholar] [CrossRef]
- Keuter, P.; To Baben, M.; Aliramaji, S.; Schneider, J.M. CALPHAD-Based Modelling of the Temperature-Composition-Structure Relationship during Physical Vapor Deposition of Mg-Ca Thin Films. Materials 2023, 16, 2417. [Google Scholar] [CrossRef]
- Li, S.; Bacco, A.C.; Birbilis, N.; Cong, H. Passivation and Potential Fluctuation of Mg Alloy AZ31B in Alkaline Environments. Corros. Sci. 2016, 112, 596–610. [Google Scholar] [CrossRef]
- Pinto, R.; Ferreira, M.G.S.; Carmezim, M.J.; Montemor, M.F. Passive Behavior of Magnesium Alloys (Mg-Zr) Containing Rare-Earth Elements in Alkaline Media. Electrochim. Acta 2010, 55, 2482–2489. [Google Scholar] [CrossRef]
- Campo, M.; Carboneras, M.; Lopez, M.D.; Torres, B.; Rodrigo, P.; Otero, E.; Rams, J. Corrosion Resistance of Thermally Sprayed Al and Al/SiC Coatings on Mg. Surf. Coat. Technol. 2009, 203, 3224–3230. [Google Scholar] [CrossRef]
- Xiong, W.; Fu, J.; Liu, C.; Li, L.; Wang, H.; Zhang, M.; Ge, Z.; Zhang, T.; Wang, Q. Laser-Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy. Coatings 2024, 14, 287. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Wu, J.; Xiang, J.; Dai, X.; Wu, T.; Yuan, Y.; Wang, J.; Jiang, B.; et al. Development of Metal-Organic Framework (MOF) Decorated Graphene Oxide/MgAl-Layered Double Hydroxide Coating via Microstructural Optimization for Anti-Corrosion Micro-Arc Oxidation Coatings of Magnesium Alloy. J. Mater. Sci. Technol. 2022, 130, 12–26. [Google Scholar] [CrossRef]
- Grubac, Z.; Roncevic, I.S.; Metikos-Hukovic, M. Corrosion Properties of the Mg Alloy Coated with Polypyrrole Films. Corros. Sci. 2016, 102, 310–316. [Google Scholar] [CrossRef]
- Cui, L.-Y.; Gao, S.-D.; Li, P.-P.; Zeng, R.-C.; Zhang, F.; Li, S.-Q.; Han, E.-H. Corrosion Resistance of a Self-Healing Micro-Arc Oxidation/Polymethyltrimethoxysilane Composite Coating on Magnesium Alloy AZ31. Corros. Sci. 2017, 118, 84–95. [Google Scholar] [CrossRef]
- Farshid, S.; Kharaziha, M.; Atapour, M. A Self-Healing and Bioactive Coating Based on Duplex Plasma Electrolytic Oxidation/Polydopamine on AZ91 Alloy for Bone Implants. J. Magnes. Alloys 2023, 11, 592–606. [Google Scholar] [CrossRef]
- Chen, W.H.; Huang, S.-Y.; Chu, Y.-R.; Yang, S.-H.; Cheng, I.-C.; Jian, S.-Y.; Lee, Y.-L. Effect of TiO2 Nanoparticles on the Corrosion Resistance, Wear, and Antibacterial Properties of Microarc Oxidation Coatings Applied on AZ31 Magnesium Alloy. Surf. Coat. Technol. 2024, 476, 130238. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Serdechnova, M.; Tang, A.; Wang, C.; Blawert, C.; Pan, F.; Zheludkevich, M.L. In-Situ LDHs Growth on PEO Coatings on AZ31 Magnesium Alloy for Active Protection: Roles of PEO Composition and Conversion Solution. J. Magnes. Alloys 2023, 11, 2376–2391. [Google Scholar] [CrossRef]
- Kaseem, M.; Hussain, T.; Rehman, Z.U.; Ko, Y.G. Stabilization of AZ31 Mg Alloy in Sea Water via Dual Incorporation of MgO and WO3 during Micro-Arc Oxidation. J. Alloys Compd. 2021, 853, 157036. [Google Scholar] [CrossRef]
- Qian, K.; Li, W.; Lu, X.; Han, X.; Jin, Y.; Zhang, T.; Wang, F. Effect of Phosphate-Based Sealing Treatment on the Corrosion Performance of a PEO Coated AZ91D Mg Alloy. J. Magnes. Alloys 2020, 8, 1328–1340. [Google Scholar] [CrossRef]
- Mashtalyar, D.; Nadaraia, K.; Plekhova, N.G.; Imshinetskiy, I.M.; Piatkova, M.A.; Pleshkova, A.; Kislova, S.E.; Sinebryukhov, S.L.; Gnedenkov, S. Antibacterial Ca/P-Coatings Formed on Mg Alloy Using Plasma Electrolytic Oxidation and Antibiotic Impregnation. Mater. Lett. 2022, 317, 132099. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Lv, Y.; Yu, Y.; Dong, Z. Formation Mechanism, Corrosion Behaviour and Biological Property of Hydroxyapatite/TiO2 Coatings Fabricated by Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2020, 386, 125483. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, Y.; Cai, G.; Fu, S.; Yang, L.; Ma, Y.; Dong, Z. Reactive Incorporation of Ag into Porous TiO2 Coating and Its Influence on Its Microstructure, in Vitro Antibacterial Efficacy and Cytocompatibility. Prog. Nat. Sci. 2021, 31, 215–229. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, R.; Qi, H.; Chen, D.; Zhou, S.; Wang, X.; Li, W. Influence of Voltage Modes on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Coating on Magnesium Alloy. J. Adhes. Sci. Technol. 2023, 37, 2232–2246. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, L.; Lv, W.; Gu, J.; Ye, F.; Oleksandr, D.; Lu, S.; Wang, Z. Growth Pattern of MAO Coating under Constant Voltage-Current Two-Step Power Mode. J. Iron Steel Res. Int. 2025, 32, 1245–1262. [Google Scholar] [CrossRef]
- Jijoe, P.S.; Yashas, S.R.; Shivaraju, H.P. Fundamentals, Synthesis, Characterization and Environmental Applications of Layered Double Hydroxides: A Review. Environ. Chem. Lett. 2021, 19, 2643–2661. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered Double Hydroxide Coatings on Magnesium Alloys: A Review. J. Mater. Sci. Technol. 2018, 34, 1455–1466. [Google Scholar] [CrossRef]
- To, T.X.H.; Trinh, A.T.; Nguyen, T.D.; Pebere, N.; Olivier, M.-G. Layered Double Hydroxides as Containers of Inhibitors in Organic Coatings for Corrosion Protection of Carbon Steel. Prog. Org. Coat. 2012, 74, 343–348. [Google Scholar] [CrossRef]
- Tan, J.K.E.; Balan, P.; Birbilis, N. Advances in LDH Coatings on Mg Alloys for Biomedical Applications: A Corrosion Perspective. Appl. Clay Sci. 2021, 202, 105948. [Google Scholar] [CrossRef]
- Chen, J.; Lin, W.; Liang, S.; Zou, L.; Wang, C.; Wang, B.; Yan, M.; Cui, X. Effect of Alloy Cations on Corrosion Resistance of LDH/MAO Coating on Magnesium Alloy. Appl. Surf. Sci. 2019, 463, 535–544. [Google Scholar] [CrossRef]
- Li, C.-Y.; Gao, L.; Fan, X.-L.; Zeng, R.-C.; Chen, D.-C.; Zhi, K.-Q. In Vitro Degradation and Cytocompatibility of a Low Temperature In-Situ Grown Self-Healing Mg-Al LDH Coating on MAO-Coated Magnesium Alloy AZ31. Bioact. Mater. 2020, 5, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cui, H.; Li, L.; Zhang, Y.; Wang, Q.; Wei, N.; Song, X.; Shao, S.; Mao, N. Incorporation of Nanometer-Sized Layered Double Hydroxide with Anions That Improve the Corrosion Resistance of Epoxy Polymer. ACS Appl. Nano Mater. 2023, 6, 20419–20430. [Google Scholar] [CrossRef]
- Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K.M. Adsorption of Phosphate by Layered Double Hydroxides in Aqueous Solutions. Appl. Clay Sci. 2006, 32, 252–260. [Google Scholar] [CrossRef]
- Li, L.; Warszawik, E.; van Rijn, P. pH-Triggered Release and Degradation Mechanism of Layered Double Hydroxides with High Loading Capacity. Adv. Mater. Interfaces 2023, 10, 2202396. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Zhong, Z.; Chen, Y.; Wu, J.; Pan, F. One-Step in Situ Synthesis of Graphene Oxide/MgAl-Layered Double Hydroxide Coating on a Micro-Arc Oxidation Coating for Enhanced Corrosion Protection of Magnesium Alloys. Surf. Coat. Technol. 2021, 413, 127083. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Lu, X.; Chen, Q.; Zhou, Y.; Wang, F. Influence of Mg Substrate on the Formation Mechanism and Corrosion Resistance of LDH Films. Surf. Coat. Technol. 2024, 476, 130242. [Google Scholar] [CrossRef]
- Zeng, R.; Liu, Z.; Zhang, F.; Li, S.; He, Q.; Cui, H.; Han, E. Corrosion Resistance of In-Situ Mg-Al Hydrotalcite Conversion Film on AZ31 Magnesium Alloy by One-Step Formation. Trans. Nonferrous Met. Soc. China 2015, 25, 1917–1925. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Weng, B.; Atrens, A.; Ma, S.; Liu, L.; Pan, F. Sealing of Anodized Magnesium Alloy AZ31 with MgAl Layered Double Hydroxides Layers. RSC Adv. 2018, 8, 2248–2259. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y.; Chen, X.; Tong, G.; Zhang, L. Microstructure and Corrosion Behavior of PEO-LDHs-SDS Superhydrophobic Composite Film on Magnesium Alloy. Corros. Sci. 2022, 208, 110699. [Google Scholar] [CrossRef]
- Jiang, D.; Xia, X.; Hou, J.; Cai, G.; Zhang, X.; Dong, Z. A Novel Coating System with Self-Reparable Slippery Surface and Active Corrosion Inhibition for Reliable Protection of Mg Alloy. Chem. Eng. J. 2019, 373, 285–297. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Lv, Y.; Dong, Z.; Hashimoto, T.; Zhou, X. Enhanced Corrosion Resistance of AZ31 Mg Alloy by One-Step Formation of PEO/Mg-Al LDH Composite Coating. Corros. Commun. 2022, 6, 67–83. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation-An Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Ikonopisov, S.; Trifonova, V.; Girginov, A. Electrical Breakdown During Anodic Film Formation on Bismuth. Surf. Technol. 1978, 7, 105–111. [Google Scholar] [CrossRef]
- Wu, D.; Liu, X.; Lu, K.; Zhang, Y.; Wang, H. Influence of C3H8O3 in the Electrolyte on Characteristics and Corrosion Resistance of the Microarc Oxidation Coatings Formed on AZ91D Magnesium Alloy Surface. Appl. Surf. Sci. 2009, 255, 7115–7120. [Google Scholar] [CrossRef]
- Duan, H.P.; Du, K.Q.; Yan, C.W.; Wang, F.H. Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D. Electrochim. Acta 2006, 51, 2898–2908. [Google Scholar] [CrossRef]
- Hussein, R.O.; Zhang, P.; Nie, X.; Xia, Y.; Northwood, D.O. The Effect of Current Mode and Discharge Type on the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coated Magnesium Alloy AJ62. Surf. Coat. Technol. 2011, 206, 1990–1997. [Google Scholar] [CrossRef]
- Chafiq, M.; Al-Moubaraki, A.H.; Chaouiki, A.; Ko, Y.G. A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives. Materials 2024, 17, 1176. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. Sonocrystallization of ZIF-8 on Electrostatic Spinning TiO2 Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect. ACS Appl. Mater. Interfaces 2016, 8, 20274–20282. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.; Zhang, Z.; Zhang, C.; Zhang, Y.; Tang, A.; Li, L.; Zhang, G.; Zheng, Z.; Atrens, A.; et al. Corrosion Resistance of Fatty Acid and Fluoroalkylsilane-Modified Hydrophobic Mg-Al LDH Films on Anodized Magnesium Alloy. Appl. Surf. Sci. 2019, 487, 569–580. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, X.; Li, F.; Evans, D.G.; Duan, X. Investigation of the Structure and Surface Characteristics of Cu-Ni-M(III) Mixed Oxides (M = Al, Cr and In) Prepared from Layered Double Hydroxide Precursors. Appl. Surf. Sci. 2009, 255, 6945–6952. [Google Scholar] [CrossRef]
- Shkirskiy, V.; Keil, P.; Hintze-Bruening, H.; Leroux, F.; Vialat, P.; Lefevre, G.; Ogle, K.; Volovitch, P. Factors Affecting MoO42− Inhibitor Release from Zn2Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Organic Coatings. ACS Appl. Mater. Interfaces 2015, 7, 25180–25192. [Google Scholar] [CrossRef] [PubMed]
- Hatami, H.; Fotovat, A.; Halajnia, A. Comparison of Adsorption and Desorption of Phosphate on Synthesized Zn-Al LDH by Two Methods in a Simulated Soil Solution. Appl. Clay Sci. 2018, 152, 333–341. [Google Scholar] [CrossRef]
- Mahjoubi, F.Z.; Khalidi, A.; Abdennouri, M.; Barka, N. Zn-Al Layered Double Hydroxides Intercalated with Carbonate, Nitrate, Chloride and Sulphate Ions: Synthesis, Characterisation and Dye Removal Properties. J. Taibah Univ. Sci. 2017, 11, 90–100. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Liu, H.; Zhao, W.; Zhu, B.; Dou, J.; Yu, H.; Chen, C. Preparation and Characterization of Micro-Arc Oxidation Biological Coatings on Magnesium Alloys Containing Graphene Oxide. Chem. Eng. J. 2024, 482, 149064. [Google Scholar] [CrossRef]
- Wu, L.; Ding, X.; Zheng, Z.; Tang, A.; Zhang, G.; Atrens, A.; Pan, F. Doublely-Doped Mg-Al-Ce-V2O74− LDH Composite Film on Magnesium Alloy AZ31 for Anticorrosion. J. Mater. Sci. Technol. 2021, 64, 66–72. [Google Scholar] [CrossRef]
- Wu, J.; Wu, L.; Yao, W.; Zhou, Y.; Wu, M.; Yuan, Y.; Xie, Z.; Atrens, A.; Wang, J.; Pan, F. Self-Healing PEO/MgAlLa LDHs-MXene Composite Coating Loaded with 4-Aminophenol for Corrosion Protection of Mg-Gd-Y-Zn LPSO Mg Alloy. Electrochim. Acta 2024, 491, 144358. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhang, Y.; Li, Y.; Sun, J.; Wang, R.; Wu, X. Glycerol as a Leveler on ZK60 Magnesium Alloys during Plasma Electrolytic Oxidation. RSC Adv. 2015, 5, 63738–63744. [Google Scholar] [CrossRef]
- Habazaki, H.; Zhou, X.; Shimizu, K.; Skeldon, P.; Thompson, G.E.; Wood, G.C. Mobility of Copper Ions in Anodic Alumina Films. Electrochim. Acta 1997, 42, 2627–2635. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, X.; Thompson, G.E.; Curioni, M.; Skeldon, P.; Zhang, X.; Sun, Z.; Luo, C.; Tang, Z.; Lu, F. Anodic Film Growth on Al-Li-Cu Alloy AA2099-T8. Electrochim. Acta 2012, 80, 148–159. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, Z. Effect of Different Liquid-Solid Contact Models on the Corrosion Resistance of Superhydrophobic Magnesium Surfaces. Corros. Sci. 2014, 87, 452–459. [Google Scholar] [CrossRef]
- Lanigan, K.C.; Pidsosny, K. Reflectance FTIR Spectroscopic Analysis of Metal Complexation to EDTA and EDDS. Vib. Spectrosc. 2007, 45, 2–9. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, H.; Li, J.; Zhao, H.; Wang, L. Polydopamine Modified Ultrathin Hydroxyapatite Nanosheets for Anti-Corrosion Reinforcement in Polymeric Coatings. Corros. Sci. 2021, 178, 109064. [Google Scholar] [CrossRef]
- Liu, H.-M.; Zhao, X.-J.; Zhu, Y.-Q.; Yan, H. DFT Study on MgAl-Layered Double Hydroxides with Different Interlayer Anions: Structure, Anion Exchange, Host-Guest Interaction and Basic Sites. Phys. Chem. Chem. Phys. 2020, 22, 2521–2529. [Google Scholar] [CrossRef]
- Huang, M.; Lu, G.; Pu, J.; Qiang, Y. Superhydrophobic and Smart MgAl-LDH Anti-Corrosion Coating on AZ31 Mg Surface. J. Ind. Eng. Chem. 2021, 103, 154–164. [Google Scholar] [CrossRef]















| Material | icorr (A/cm2) | Ecorr (V) |
|---|---|---|
| Bare | 1.05 × 10−4 | −1.473 |
| MAO–0 | 1.03 × 10−6 | −1.332 |
| MAO–15 | 4.88 × 10−7 | −1.259 |
| MAO–30 | 1.63 × 10−6 | −1.367 |
| Immersion Time (h) | Rs (Ω/cm2) | CPEMAO (F/cm2) | CPEMAO-n | RMAO (Ω/cm2) | CPEdl (F/cm2) | CPEdl-n | Rct (Ω/cm2) | RL (Ω/cm2) | L (H/cm2) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 73.59 | 3.27 × 10−7 | 0.90 | 6.8 × 103 | 8.58 × 10−6 | 0.70 | 7.04 × 103 | - | - |
| 12 | 73.63 | 2.25 × 10−7 | 0.85 | 5.69 × 103 | 7.83 × 10−6 | 0.67 | 4.67 × 103 | - | - |
| 24 | 73.6 | 2.17 × 10−7 | 0.87 | 5.53 × 103 | 4.92 × 10−6 | 0.63 | 1.76 × 103 | - | - |
| 30 | 74.16 | 3.27 × 10−6 | 0.84 | 3.30 × 103 | 3.86 × 10−6 | 0.58 | 1.18 × 103 | - | - |
| 32 | 76.69 | 9.67 × 10−5 | 0.83 | 1.80 × 103 | 6.96 × 10−7 | 0.72 | 5.19 × 102 | 3098 | 3567 |
| Immersion Time (h) | Rs (Ω/cm2) | CPEMAO (F/cm2) | CPEMAO-n | RMAO (Ω/cm2) | CPEdl (F/cm2) | CPEdl-n | Rct (Ω/cm2) | RL (Ω/cm2) | L (H/cm2) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 67.45 | 1.32 × 10−6 | 0.90 | 3.86 × 104 | 9.49 × 10−6 | 0.81 | 1.74 × 104 | - | - |
| 12 | 71.53 | 1.17 × 10−6 | 0.92 | 1.88 × 104 | 7.61 × 10−6 | 0.77 | 7.51 × 103 | - | - |
| 24 | 71.25 | 1.56 × 10−6 | 0.88 | 1.66 × 104 | 6.47 × 10−6 | 0.76 | 6.02 × 103 | - | - |
| 30 | 234.8 | 2.79 × 10−6 | 0.86 | 8.58 × 103 | 2.33 × 10−6 | 0.55 | 6.30 × 103 | - | - |
| 32 | 243.6 | 6.64 × 10−6 | 0.95 | 8.31 × 103 | 1.14 × 10−7 | 0.78 | 4.20 × 103 | 1.41 × 103 | 9547 |
| Immersion Time (h) | Rs (Ω/cm2) | CPEMAO (F/cm2) | CPEMAO-n | RMAO (Ω/cm2) | CPEdl (F/cm2) | CPEdl-n | Rct (Ω/cm2) | RL (Ω/cm2) | L (H/cm2) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 232 | 1.41 × 10−6 | 0.89 | 3.19 × 104 | 5.49 × 10−6 | 0.73 | 1.29 × 104 | - | - |
| 12 | 235.7 | 1.51 × 10−6 | 0.90 | 1.13 × 104 | 2.37 × 10−6 | 0.69 | 5.42 × 103 | - | - |
| 18 | 232.9 | 2.05 × 10−6 | 0.88 | 6.91 × 103 | 1.88 × 10−6 | 0.64 | 3.28 × 103 | - | - |
| 22 | 245.7 | 3.27 × 10−6 | 0.89 | 4.67 × 103 | 1.29 × 10−6 | 0.59 | 3.14 × 103 | - | - |
| 24 | 76.69 | 7.17 × 10−6 | 0.76 | 2.04 × 103 | 3.77 × 10−7 | 0.76 | 1.07 × 103 | 3887 | 4829 |
| Material | icorr (A/cm2) | Ecorr (V) |
|---|---|---|
| MAO-0-STA | 2.78 × 10−7 | −1.329 |
| MAO-15-STA | 2.86 × 10−10 | −1.193 |
| MAO-30-STA | 4.12 × 10−9 | −1.124 |
| Samples | Rs (Ω/cm2) | CPEMAO (F/cm2) | CPEMAO-n | RMAO (Ω/cm2) | CPEdl (F/cm2) | CPEdl-n | Rct (Ω/cm2) | Zw (Ω−0.5·S−1·cm−2) |
|---|---|---|---|---|---|---|---|---|
| MAO–0–STA | 68.89 | 1.03 × 10−7 | 0.84 | 7.56 × 106 | 7.81 × 10−7 | 0.39 | 1.29 × 105 | - |
| MAO–15–STA | 43.82 | 2.77 × 10−8 | 0.87 | 2.25 × 107 | 2.14 × 10−8 | 0.89 | 7.09 × 106 | 1.71 × 10−7 |
| MAO–30–STA | 68.06 | 7.82 × 10−7 | 0.48 | 1.05 × 107 | 1.05 × 10−7 | 0.91 | 1.14 × 105 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shi, L.; Lu, X.; Li, P.; Liu, C.; Liang, J. Preparation and Characterization of Oxide Coatings with LDH Nanosheets on AZ91 Magnesium Alloy by a One-Step Low Voltage Microarc Oxidation Process. Materials 2026, 19, 216. https://doi.org/10.3390/ma19020216
Shi L, Lu X, Li P, Liu C, Liang J. Preparation and Characterization of Oxide Coatings with LDH Nanosheets on AZ91 Magnesium Alloy by a One-Step Low Voltage Microarc Oxidation Process. Materials. 2026; 19(2):216. https://doi.org/10.3390/ma19020216
Chicago/Turabian StyleShi, Longfeng, Xuchen Lu, Peixuan Li, Cancan Liu, and Jun Liang. 2026. "Preparation and Characterization of Oxide Coatings with LDH Nanosheets on AZ91 Magnesium Alloy by a One-Step Low Voltage Microarc Oxidation Process" Materials 19, no. 2: 216. https://doi.org/10.3390/ma19020216
APA StyleShi, L., Lu, X., Li, P., Liu, C., & Liang, J. (2026). Preparation and Characterization of Oxide Coatings with LDH Nanosheets on AZ91 Magnesium Alloy by a One-Step Low Voltage Microarc Oxidation Process. Materials, 19(2), 216. https://doi.org/10.3390/ma19020216

