Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Microstructure Evaluation
3.2. Electrochemical Analysis
3.3. Static Immersion Test
4. Conclusions
- (1)
- Microstructure analysis shows that as the solution temperature increases, the content of primary α phase decreases from 71.5% to 10.4%, and the average α phase size decreases from 2.79 μm to 0.38 μm.
- (2)
- Potentiodynamic polarization curves reveal that all solution-treated Ti90 alloys undergo an active-to-passive transition in 5 M HCl solution. With increasing solution temperature, the Ecorr shifts positively, while the icorr decreases from 97.57 μAcm−2 to 38.50 μAcm−2, and the ipass decreases from 97.57 μAcm−2 to 38.50 μAcm−2, indicating progressively improved corrosion resistance.
- (3)
- EIS confirms the formation of a corrosion product film in 5 M HCl solution. The fitting results show that the polarization resistance increases from 193.2 Ω·cm2 to 317.5 Ω·cm2 with increasing solution temperature, further demonstrating enhanced corrosion resistance.
- (4)
- Static immersion tests show that the corrosion rate decreases from 2.25 mm/a to 1.52 mm/a with rising solution temperature, consistent with electrochemical measurements. The α phase is found to dissolve preferentially during corrosion.
- (5)
- The corrosion of solution-treated Ti90 alloy results from the combined effects of chemical dissolution of the primary oxide film and the substrate, as well as micro-galvanic corrosion. A higher β-phase content and a smaller average α-phase thickness in the solution-treated Ti90 alloy correspond to superior corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Pan, Z.; Li, S.; Cuiuri, D.; Ding, D.; Li, H. The Anisotropic Corrosion Behaviour of Wire Arc Additive Manufactured Ti-6Al-4V Alloy in 3.5% NaCl Solution. Corros. Sci. 2018, 137, 176–183. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, Z.; Feng, Z.; Pan, B.; Zhang, X.; Ma, M.; Liu, R. Effect of Zirconium Content on the Microstructure and Corrosion Behavior of Ti-6Al-4V-Xzr Alloys. Corros. Sci. 2016, 112, 687–695. [Google Scholar] [CrossRef]
- Wei, H.; Wei, Y.; Hou, L.; Dang, N. Correlation of Ageing Precipitates with the Corrosion Behaviour of Cu-4Wt.% Ti Alloys in 3.5Wt.% NaCl Solution. Corros. Sci. 2016, 111, 382–390. [Google Scholar] [CrossRef]
- Yan, S.; Song, G.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Horynova, M.; Dargusch, M.S.; Zhou, L. A State-of-the-Art Review on Passivation and Biofouling of Ti and its Alloys in Marine Environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Xu, W.; Lu, X.; Tian, J.; Huang, C.; Chen, M.; Yan, Y.; Wang, L.; Qu, X.; Wen, C. Microstructure, Wear Resistance, and Corrosion Performance of Ti35Zr28Nb Alloy Fabricated by Powder Metallurgy for Orthopedic Applications. J. Mater. Sci. Technol. 2020, 41, 191–198. [Google Scholar] [CrossRef]
- Ho, W. A Comparison of Tensile Properties and Corrosion Behavior of Cast Ti–7.5Mo with C.P. Ti, Ti–15Mo and Ti–6Al–4V Alloys. J. Alloys Compd. 2008, 464, 580–583. [Google Scholar] [CrossRef]
- Tamilselvi, S.; Raman, V.; Rajendran, N. Corrosion Behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy. Electrochim. Acta 2006, 52, 839–846. [Google Scholar] [CrossRef]
- Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical Stability and Corrosion Resistance of Ti–Mo Alloys for Biomedical Applications. Acta Biomater. 2009, 5, 399–405. [Google Scholar] [CrossRef]
- Bai, Y.; Gai, X.; Li, S.; Zhang, L.; Liu, Y.; Hao, Y.; Zhang, X.; Yang, R.; Gao, Y. Improved Corrosion Behaviour of Electron Beam Melted Ti-6Al–4V Alloy in Phosphate Buffered Saline. Corros. Sci. 2017, 123, 289–296. [Google Scholar]
- Liu, X.; Ran, D.; Meng, H.M.; Li, Q.D.; Gong, X.F.; Long, B. Research Progress of the Effect of Surface Nanocrystallization on the Electrochemical Corrosion of Titanium Alloys. Rare Met. Mat. Eng. 2021, 50, 2244–2253. [Google Scholar]
- Kuroda, P.A.B.; Lourenço, M.L.; Correa, D.R.N.; Grandini, C.R. Thermomechanical Treatments Influence on the Phase Composition, Microstructure, and Selected Mechanical Properties of Ti–20Zr–Mo Alloys System for Biomedical Applications. J. Alloys Compd. 2020, 812, 152108. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, C.; Feng, Z.; Jiang, X.; Pan, B.; Zhang, X.; Ma, M.; Liu, R. Corrosion and Passivation of Annealed Ti–20Zr–6.5Al–4V Alloy. Corros. Sci. 2015, 101, 56–65. [Google Scholar]
- Jing, R.; Liang, S.X.; Liu, C.Y.; Ma, M.Z.; Liu, R.P. Effect of the Annealing Temperature on the Microstructural Evolution and Mechanical Properties of TiZrAlV Alloy. Mater. Des. 2013, 52, 981–986. [Google Scholar]
- Wei, Y.; Pan, Z.; Fu, Y.; Yu, W.; He, S.; Yuan, Q.; Luo, H.; Li, X. Effect of Annealing Temperatures on Microstructural Evolution and Corrosion Behavior of Ti-Mo Titanium Alloy in Hydrochloric Acid. Corros. Sci. 2022, 197, 110079. [Google Scholar] [CrossRef]
- Meng, K.; Guo, K.; Yu, Q.; Miao, D.; Yao, C.; Wang, Q.; Wang, T. Effect of Annealing Temperature on the Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy in Hydrochloric Acid Solution. Corros. Sci. 2021, 183, 109320. [Google Scholar]
- Al-Mayouf, A.M.; Al-Swayih, A.A.; Al-Mobarak, N.A.; Al-Jabab, A.S. Corrosion Behavior of a New Titanium Alloy for Dental Implant Applications in Fluoride Media. Mater. Chem. Phys. 2004, 86, 320–329. [Google Scholar] [CrossRef]
- Atapour, M.; Pilchak, A.L.; Shamanian, M.; Fathi, M.H. Corrosion Behavior of Ti–8Al–1Mo–1V Alloy Compared to Ti–6Al–4V. Mater. Des. 2011, 32, 1692–1696. [Google Scholar]
- Lv, X.H.; Liu, L.L.; Li, J.; Yu, H.B.; Xie, J.F. Corrosion Behavior of Titanium Alloy in High pH Value Completion Fluid. Rare Met. Mat. Eng. 2020, 49, 2326–2332. [Google Scholar]
- de Souza, K.A.; Robin, A. Influence of Concentration and Temperature on the Corrosion Behavior of Titanium, Titanium-20 and 40% Tantalum Alloys and Tantalum in Sulfuric Acid Solutions. Mater. Chem. Phys. 2007, 103, 351–360. [Google Scholar] [CrossRef]
- Singh, V.B.; Gupta, A. Microstructural and Corrosion Studies of Ti Alloy (IMI 834) in Acidic Solutions. J. Appl. Electrochem. 2002, 32, 795–803. [Google Scholar] [CrossRef]
- Atapour, M.; Pilchak, A.; Frankel, G.S.; Williams, J.C. Corrosion Behaviour of Investment Cast and Friction Stir Processed Ti–6Al–4V. Corros. Sci. 2010, 52, 3062–3069. [Google Scholar] [CrossRef]
- Ibrahim, K.M.; MahmoudMoustafa, M.; Al-Grafi, M.W.; El-Bagoury, N.; Amin, M.A. Effect of Solution Heat Treatment on Microstructure and Wear and Corrosion Behavior of a Two Phase B-Metastable Titanium Alloy. Int. J. Electrochem. Sci. 2016, 11, 3206–3226. [Google Scholar] [CrossRef]
- Alberta, L.A.; Vishnu, J.; Hariharan, A.; Pilz, S.; Gebert, A.; Calin, M. Novel Low Modulus Beta-Type Ti–Nb Alloys by Gallium and Copper Minor Additions for Antibacterial Implant Applications. J. Mater. Res. Technol. 2022, 20, 3306–3322. [Google Scholar] [CrossRef]
- Argade, G.R.; Panigrahi, S.K.; Mishra, R.S. Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium. Corros. Sci. 2012, 58, 145–151. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Zhao, X.; Sheng, Y.; Li, W.; Chang, C.; Zhang, Q.; Yu, Z.; Wang, X. Microstructure, Mechanical Properties and Corrosion Behaviors of Biomedical Ti-Zr-Mo-Xmn Alloys for Dental Application. Corros. Sci. 2019, 161, 108195. [Google Scholar] [CrossRef]
- Utomo, W.B.; Donne, S.W. Electrochemical Behaviour of Titanium in H2so4–MnSO4 Electrolytes. Electrochim. Acta 2006, 51, 3338–3345. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the Corrosion Behavior of Pure Titanium and its Alloys in Fluoride-Containing Sulfuric Acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Tran, T.T.M.; Tribollet, B.; Sutter, E.M.M. New Insights into the Cathodic Dissolution of Aluminium Using Electrochemical Methods. Electrochim. Acta 2016, 216, 58–67. [Google Scholar] [CrossRef]
- Klink, R.; van Doorn, R.H.E.; Weber, A. Review—Electrochemical Impedance Spectroscopy for Lithium- Ion Batteries: Measurement and Analysis (for Automotive Applications). Curr. Opin. Electrochem. 2025, 54, 101768. [Google Scholar] [CrossRef]
- Chakri, S.; Frateur, I.; Orazem, M.E.; Sutter, E.M.M.; Tran, T.T.M.; Tribollet, B.; Vivier, V. Improved EIS Analysis of the Electrochemical Behaviour of Carbon Steel in Alkaline Solution. Electrochim. Acta 2017, 246, 924–930. [Google Scholar] [CrossRef]
- Alexander, C.L.; Tribollet, B.; Orazem, M.E. Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 1. Influence of Roughness. Electrochim. Acta 2015, 173, 416–424. [Google Scholar] [CrossRef]
- Peng, C.; Liu, Y.; Liu, H.; Zhang, S.; Bai, C.; Wan, Y.; Ren, L.; Yang, K. Optimization of Annealing Treatment and Comprehensive Properties of Cu-Containing Ti6Al4V-Xcu Alloys. J. Mater. Sci. Technol. 2019, 35, 2121–2131. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Huo, W.; Zhang, W.; Zhao, Y.; Zhang, Y. Electrochemical Corrosion Characteristics and Biocompatibility of Nanostructured Titanium for Implants. Appl. Surf. Sci. 2018, 434, 63–72. [Google Scholar] [CrossRef]
- Jelliti, S.; Richard, C.; Retraint, D.; Roland, T.; Chemkhi, M.; Demangel, C. Effect of Surface Nanocrystallization on the Corrosion Behavior of Ti–6Al–4V Titanium Alloy. Surf. Coat. Technol. 2013, 224, 82–87. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element Parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Pan, J.; Thierry, D.; Leygraf, C. Electrochemical and XPS Studies of Titanium for Biomaterial Applications with Respect to the Effect of Hydrogen Peroxide. J. Biomed. Mater. Res. 1994, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kang, H.; Guo, E.; Li, R.; Chen, Z.; Zeng, Y.; Wang, T. The Role of Nickel in Mechanical Performance and Corrosion Behaviour of Nickel-Aluminium Bronze in 3.5 Wt.% NaCl Solution. Corros. Sci. 2018, 139, 333–345. [Google Scholar] [CrossRef]
- Dyer, C.K.; Leach, J.S.L. Reversible Reactions within Anodic Oxide Films on Titanium Electrodes. Electrochim. Acta 1978, 23, 1387–1394. [Google Scholar] [CrossRef]
- Blackwood, D.J.; Peter, L.M.; Williams, D.E. Stability and Open Circuit Breakdown of the Passive Oxide Film on Titanium. Electrochim. Acta 1988, 33, 1143–1149. [Google Scholar] [CrossRef]
- Chen, J.; Tsai, W. In Situ Corrosion Monitoring of Ti–6Al–4V Alloy in H2so4/HCl Mixed Solution Using Electrochemical AFM. Electrochim. Acta 2011, 56, 1746–1751. [Google Scholar] [CrossRef]
- Khan, M.A.; Williams, R.L.; Williams, D.F. The Corrosion Behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in Protein Solutions. Biomaterials 1999, 20, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Lou, Y.; Ruan, H. The Partition Coefficient of Alloying Elements and its Influence on the Pitting Corrosion Resistance of 15Cr-2Ni Duplex Stainless Steel. Corros. Sci. 2018, 139, 13–20. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N.; Davies, C.H.J. Revealing the Relationship Between Grain Size and Corrosion Rate of Metals. Scr. Mater. 2010, 63, 1201–1204. [Google Scholar] [CrossRef]











| Ti | Al | Mo | V | Zr | Sn | Nb | O |
|---|---|---|---|---|---|---|---|
| Bal. | 6.05 | 1.11 | 1.05 | 3.86 | 1.03 | 2.91 | 0.062 |
| Ti90 plates | Ecorr (mV vs. Ag/AgCl) | icorr (μA cm−2) | ipass (+0.5 V) (μA cm−2) |
|---|---|---|---|
| 750 | −523.0 ± 0.51 | 266.86 ± 1.62 | 97.57 ± 0.58 |
| 900 | −502.4 ± 0.36 | 223.19 ± 2.02 | 76.51 ± 0.46 |
| 940 | −492.6 ± 0.43 | 171.69 ± 0.86 | 48.32 ± 0.30 |
| 960 | −467.4 ± 0.58 | 135.69 ± 1.24 | 38.50 ± 0.38 |
| Solution Temperature | Rs (Ω·cm2) | CPEdl (10−5 S·Sn cm−2) | ndl | Rct (Ω·cm2) | CPEf (10−3 S·Sn cm−2) | nf | Rf (Ω·cm2) | χ2 (10−4) | λ2 | Rp (Ω·cm2) | Cdl (10−5 F cm−2) | Cf (10−3 F cm−2) | d (nm) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 750 °C | 0.565 | 55.92 | 0.903 | 110.1 | 54.98 | 1 | 83.1 | 1.11 | 0.011 | 193.2 | 80.99 | 54.98 | 10.47 |
| Error (%) | 0.26 | 0.67 | 0.11 | 0.35 | 2.53 | 1.27 | 1.8 | ||||||
| 900 °C | 0.615 | 73.07 | 0.851 | 134 | 62.5 | 1 | 89.8 | 1.28 | 1.13 | 223.8 | 142.15 | 57.35 | 9.21 |
| Error (%) | 0.28 | 0.67 | 0.12 | 0.41 | 3.45 | 1.60 | 2.38 | ||||||
| 940 °C | 0.591 | 69.35 | 0.786 | 161.4 | 57.74 | 1 | 106 | 0.526 | 0.241 | 267.4 | 190.40 | 49.98 | 9.97 |
| Error (%) | 0.217 | 0.427 | 0.079 | 0.269 | 2.38 | 1.08 | 1.65 | ||||||
| 960 °C | 0.565 | 92.27 | 0.77 | 196.1 | 52.97 | 0.919 | 121.4 | 0.636 | 0.798 | 317.5 | 300.32 | 63.32 | 8.05 |
| Error (%) | 0.24 | 0.45 | 0.087 | 0.378 | 3.64 | 1.74 | 2.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mao, C.; Zhang, S.; Li, S.; Wang, J.; Li, Q.; Jia, W. Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution. Materials 2026, 19, 47. https://doi.org/10.3390/ma19010047
Mao C, Zhang S, Li S, Wang J, Li Q, Jia W. Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution. Materials. 2026; 19(1):47. https://doi.org/10.3390/ma19010047
Chicago/Turabian StyleMao, Chengliang, Siyuan Zhang, Silan Li, Jialu Wang, Qian Li, and Weiju Jia. 2026. "Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution" Materials 19, no. 1: 47. https://doi.org/10.3390/ma19010047
APA StyleMao, C., Zhang, S., Li, S., Wang, J., Li, Q., & Jia, W. (2026). Effect of Solution Temperature on Corrosion Behavior of Ti-6Al-4Zr-3Nb-1.1Mo-1Sn-1V Alloy in Hydrochloric Acid Solution. Materials, 19(1), 47. https://doi.org/10.3390/ma19010047

