Ceramic Foam Granulate from Crashed Clinker Pavers
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amir, A.H.; Alibaba, H.Z. Comparison between heat conductivity of EPS (expanded polystyrene) and XPS (extruded polystyrene). Int. J. Recent Res. Civ. Mech. Eng. 2018, 4, 24–31. [Google Scholar]
- Yoo, J.; Chang, S.J.; Yang, S.; Wi, S.; Kim, Y.U.; Kim, S. Performance of the hygrothermal behavior of the CLT wall using different types of insulation; XPS, PF board and glass wool. Case Stud. Therm. Eng. 2021, 24, 100846. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T. Development and application status of glass wool, rock wool, and ceramic wool. In Thermal Insulation and Radiation Control Technologies for Buildings; Springer International Publishing: Cham, Switzerland, 2022; pp. 129–161. [Google Scholar]
- Kure, J.M.; Pierlot, A.P.; Russell, I.M.; Shanks, R.A. The glass transition of wool: An improved determination using DSC. Text. Res. J. 1997, 67, 18–22. [Google Scholar] [CrossRef]
- Marabini, A.M.; Plescia, P.; Maccari, D.; Burragato, F.; Pelino, M. New materials from industrial and mining wastes: Glass–ceramics and glass-and rock-wool fibre. Int. J. Miner. Process. 1998, 53, 121–134. [Google Scholar] [CrossRef]
- Adediran, A.; Lemougna, P.N.; Yliniemi, J.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Recycling glass wool as a fluxing agent in the production of clay-and waste-based ceramics. J. Clean. Prod. 2021, 289, 125673. [Google Scholar] [CrossRef]
- Kyoung-Woo, K.I.M.; Jeong, Y.S. Experimental study on the comparison of the material properties of glass wool used as building materials. Mater. Sci. 2014, 20, 103–107. [Google Scholar] [CrossRef]
- Moesgaard, M.; Pedersen, H.D.; Yue, Y.Z.; Nielsen, E.R. Crystallization in stone wool fibres. J. Non-Cryst. Solids 2007, 353, 1101–1108. [Google Scholar] [CrossRef]
- Schultz-Falk, V.; Agersted, K.; Jensen, P.A.; Solvang, M. Melting behaviour of raw materials and recycled stone wool waste. J. Non-Cryst. Solids 2018, 485, 34–41. [Google Scholar] [CrossRef]
- Jensen, P.G.; Belmonte, L.; Solvang, M.; Yue, Y. Quantification of high temperature stability of mineral wool for fire-safe insulation. J. Non-Cryst. Solids 2023, 622, 122680. [Google Scholar] [CrossRef]
- Whitham, A.G.; Sparks, R.S.J. Pumice. Bull. Volcanol. 1986, 48, 209–223. [Google Scholar] [CrossRef]
- Gencel, O. Characteristics of fired clay bricks with pumice additive. Energy Build. 2015, 102, 217–224. [Google Scholar] [CrossRef]
- Kuzugudenli, O.E. Use of pumice stone as a ceramic raw material. Key Eng. Mater. 2004, 264, 1427–1430. [Google Scholar] [CrossRef]
- Altimari, F.; Andreola, F.; Benassi, P.P.; Lancellotti, I.; Barbieri, L. Pumice and lapillus scraps: New national environmental-friendly chance for the production of ceramic tiles. Ceram. Int. 2023, 49, 38743–38753. [Google Scholar] [CrossRef]
- Karamanov, A.; Arrizza, L.; Ergul, S. Sintered material from alkaline basaltic tuffs. J. Eur. Ceram. Soc. 2009, 29, 595–601. [Google Scholar] [CrossRef]
- Ergul, S.; Akyildiz, M.; Karamanov, A. Ceramic material from basaltic tuffs. Ind. Ceram. 2007, 27, 89–94. [Google Scholar]
- de’Gennaro, R.; Cappelletti, P.; Cerri, G.; de’Gennaro, M.; Dondi, M.; Langella, A. Zeolitic tuffs as raw materials for lightweight aggregates. Appl. Clay Sci. 2004, 25, 71–81. [Google Scholar] [CrossRef]
- Deniz, B.E.; Topal, T. A new durability assessment method of the tuffs used in some historical buildings of Cappadocia (Turkey). Environ. Earth Sci. 2021, 80, 266. [Google Scholar] [CrossRef]
- Erguvanli, A.K.; Yüzer, A.E. Past and Present Use of Underground Openings Excavated in Volcanic Tuffs at Cappodocia Area. In Storage in Excavated Rock Caverns: Rockstore; Pergamon Press: Oxford, UK, 1978; Volume 77, pp. 31–36. [Google Scholar]
- Lancaster, L.C. Materials and Construction of the Pantheon in Relation to the Developments in Vaulting in Antiquity. In The Pantheon in Rome: Contributions to the Conference Bern; Bern Studies in the History and Philosophy of Science: Bern, Switzerland, 2009; pp. 117–125. [Google Scholar]
- Liu, Q.; Li, B.; Xiao, J.; Singh, A. Utilization potential of aerated concrete block powder and clay brick powder from C&D waste. Constr. Build. Mater. 2020, 238, 117721. [Google Scholar] [CrossRef]
- Khitab, A.; Riaz, M.S.; Jalil, A.; Khan, R.B.N.; Anwar, W.; Khan, R.A.; Arshad, M.T.; Kirgiz, M.S.; Tariq, Z.; Tayyab, S. Manufacturing of clayey bricks by synergistic use of waste brick and ceramic powders as partial replacement of clay. Sustainability 2021, 13, 10214. [Google Scholar] [CrossRef]
- Colombo, P. Conventional and novel processing methods for cellular ceramics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 109–124. [Google Scholar] [CrossRef]
- Scarinci, G.; Brusatin, G.; Bernardo, E. Glass foams. In Cellular Ceramics. Structure, Manufacturing, Properties and Applications; Wiley-VCH: Weinheim, Germany, 2006; pp. 158–176. [Google Scholar]
- Appendino, P.; Ferraris, M.; Matekovits, I.; Salvo, M. Production of glass–ceramic bodies from the bottom ashes of municipal solid waste incinerators. J. Eur. Ceram. Soc. 2004, 24, 803–810. [Google Scholar] [CrossRef]
- Chinnam, R.K.; Francis, A.A.; Will, J.; Bernardo, E.; Boccaccini, A.R. Functional glasses and glass–ceramics derived from iron rich waste and combination of industrial residues. J. Non-Cryst. Solids 2013, 365, 63–74. [Google Scholar] [CrossRef]
- Karamanov, A.; Hamzawy, E.M.; Karamanova, E.; Jordanov, N.B.; Darwish, H. Sintered glass–ceramics and foams by metallurgical slag with addition of CaF2. Ceram. Int. 2020, 46, 6507–6516. [Google Scholar] [CrossRef]
- Jordanov, N.B.; Hamzawy, E.M.A.; Karamanov, A. Influence of the oxidation stage on foaming of sintered glass–ceramics. Mater. Lett. 2025, 360, 138747. [Google Scholar] [CrossRef]
- Maniati, Y.; Tite, M.S. A Scanning Electron Microscope Examination of the Bloating of Fired Clays. January Trans. J. Br. Ceram. Soc. 1975, 74, 229–232. [Google Scholar]
- Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Uceda-Rodríguez, M.; Cotes-Palomino, T.; García, C.M.; Alonso-Azcárate, J. Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas. Constr. Build. Mater. 2020, 247, 118583. [Google Scholar] [CrossRef]
- Kara-Sal, B.K.; Sat, D.K.; Kaminskii, Y.D.; Ochur-Ool, A.P. Effect of organic substances in clay rocks on formation of a black core in ceramics. Glass Ceram. 2008, 65, 84–87. [Google Scholar] [CrossRef]
- Taşkıran, M.U.; Kayacı, K.; Sirkeci, A.A.; Yıldırım, Y.; Darcan, B. Prevention of black core formation in ceramic bodies. Physicochem. Probl. Miner. Process. 2025, 61, 203933. [Google Scholar] [CrossRef]
- Dondi, M.; Matteucci, F.; Cruciani, G.; Gasparotto, G.; Tobaldi, D.M. Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sci. 2007, 9, 362–369. [Google Scholar] [CrossRef]
- Götze, J.; Göbbels, M. Ceramic Materials. In Introduction to Applied Mineralogy; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Zhao, J.C. (Ed.) Methods for Phase Diagram Determination; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Karamanov, A.; Gioacchino, R.D.; Pisciella, P.; Pelino, M. Glass transformation range of iron rich glass and glass ceramics determined by different methods. Glass Technol. 2001, 42, 126–129. [Google Scholar]
- Gutzow, I.; Schmelzer, J. The Vitreous State; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Michael, F. Ashby, Materials Selection in Mechanical Design, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Fernandes, H.R.; Tulyaganov, D.U.; Ferreira, J.M.F. Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 2009, 35, 229–235. [Google Scholar] [CrossRef]
- Marangoni, M.; Secco, M.; Parisatto, M.; Artioli, G.; Bernardo, E.; Colombo, P.; Altlasi, H.; Binmajed, M.; Binhussain, M. Cellular glass–ceramics from a self foaming mixture of glass and basalt scoria. J. Non-Cryst. Solids 2014, 403, 38–46. [Google Scholar] [CrossRef]
- Ge, X.; Zhou, M.; Fan, C.; Zhang, Y.; Zhang, X. Investigation on strength and failure behavior of ceramic foams prepared from silicoaluminous industrial waste under uniaxial compression. Constr. Build. Mater. 2022, 317, 125912. [Google Scholar] [CrossRef]
- Asniar, N.; Purwana, Y.M.; Surjandari, N.S. Tuff as rock and soil: Review of the literature on tuff geotechnical, chemical and mineralogical properties around the world and in Indonesia. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2114, p. 050022. [Google Scholar] [CrossRef]








| ρa (g/cm3) | ρas (g/cm3) | P (vol. %) | |
|---|---|---|---|
| Parent clinker | 2.33 ± 0.01 | 2.716 ± 0.002 | 14.2 ± 0.5 |
| 1280-C | 0.71 ± 0.03 | 2.556 ± 0.003 | 72.2 ± 1.3 |
| 1280-Q | 0.38 ± 0.03 | 2.533 ± 0.003 | 85.0 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Karamanov, A.; Djobov, I.; Hodjaoglu, F.; Aleksandrov, L.; Karamanova, E. Ceramic Foam Granulate from Crashed Clinker Pavers. Materials 2026, 19, 160. https://doi.org/10.3390/ma19010160
Karamanov A, Djobov I, Hodjaoglu F, Aleksandrov L, Karamanova E. Ceramic Foam Granulate from Crashed Clinker Pavers. Materials. 2026; 19(1):160. https://doi.org/10.3390/ma19010160
Chicago/Turabian StyleKaramanov, Alexander, Ilian Djobov, Feyzim Hodjaoglu, Lyubomir Aleksandrov, and Emilia Karamanova. 2026. "Ceramic Foam Granulate from Crashed Clinker Pavers" Materials 19, no. 1: 160. https://doi.org/10.3390/ma19010160
APA StyleKaramanov, A., Djobov, I., Hodjaoglu, F., Aleksandrov, L., & Karamanova, E. (2026). Ceramic Foam Granulate from Crashed Clinker Pavers. Materials, 19(1), 160. https://doi.org/10.3390/ma19010160
