Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedure and Materials
2.2. Synthesis of CC
2.3. Synthesis of FC
2.4. Ethylene Oligomerization
2.5. Characterization
3. Results and Discussion
3.1. Synthesis and Characteristics of Complexes
3.2. DFT Studies
3.3. Ethylene Oligomerization Using FC and CC
3.4. Product Distribution and Microstructural Properties
3.5. Effect of Polymerization Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrmann, W.A.; Cornils, B. Homogeneous Catalysis—Quo Vadis? In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W.A., Eds.; Wiley: Hoboken, NJ, USA, 2002; pp. 1341–1383. [Google Scholar] [CrossRef]
- Tang, S.; Liu, Z.; Yan, X.; Li, N.; Cheng, R.; He, X.; Liu, B. Kinetic Studies on the Pyrrole–Cr-Based Chevron-Phillips Ethylene Trimerization Catalyst System. Appl. Catal. A Gen. 2014, 481, 39–48. [Google Scholar] [CrossRef]
- Kuhlmann, S.; Blann, K.; Bollmann, A.; Dixon, J.T.; Killian, E.; Maumela, M.C.; Maumela, H.; Morgan, D.H.; Prétorius, M.; Taccardi, N.; et al. N-Substituted Diphosphinoamines: Toward Rational Ligand Design for the Efficient Tetramerization of Ethylene. J. Catal. 2007, 245, 279–284. [Google Scholar] [CrossRef]
- McGuinness, D.S.; Wasserscheid, P.; Keim, W.; Morgan, D.; Dixon, J.T.; Bollmann, A.; Maumela, H.; Hess, F.; Englert, U. First Cr(III)−SNS Complexes and Their Use as Highly Efficient Catalysts for the Trimerization of Ethylene to 1-Hexene. J. Am. Chem. Soc. 2003, 125, 5272–5273. [Google Scholar] [CrossRef] [PubMed]
- Blann, K.; Bollmann, A.; Dixon, J.T.; Hess, F.M.; Killian, E.; Maumela, H.; Morgan, D.H.; Neveling, A.; Otto, S.; Overett, M.J. Highly Selective Chromium-Based Ethylene Trimerisation Catalysts with Bulky Diphosphinoamine Ligands. Chem. Commun. 2005, 5, 620–621. [Google Scholar] [CrossRef]
- Kröger, H.; Donner, I.; Skiello, G. Influence of a New Virostatic Compound on the Induction of Enzymes in Rat Liver. Arzneimittelforschung 1975, 25, 1426–1429. [Google Scholar]
- Gibson, V.C.; Spitzmesser, S.K. Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev. 2003, 103, 283–316. [Google Scholar] [CrossRef]
- Tsurugi, H.; Yamamoto, K.; Rochat, R.; Mashima, K. Non-Bridged Half-Metallocene Complexes of Group 4–6 Metals with Chelating Ligands as Well-Defined Catalysts for α-Olefin Polymerization. Polym. J. 2015, 47, 2–17. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Z.; Sun, W.-H. Modeling Study on the Catalytic Activities of 2-Imino-1,10-Phenanthrolinylmetal (Fe, Co, and Ni) Precatalysts in Ethylene Oligomerization. RSC Adv. 2016, 6, 79335–79342. [Google Scholar] [CrossRef]
- Wang, Z.; Solan, G.A.; Zhang, W.; Sun, W.-H. Carbocyclic-Fused N,N,N-Pincer Ligands as Ring-Strain Adjustable Supports for Iron and Cobalt Catalysts in Ethylene Oligo-/Polymerization. Coord. Chem. Rev. 2018, 363, 92–108. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, W.; Liang, T.; Sun, W.-H. Revisiting the 2-Imino-1,10-Phenanthrolylmetal Precatalyst in Ethylene Oligomerization: Benzhydryl-Modified Cobalt(II) Complexes and Their Dimerization of Ethylene. Polyhedron 2021, 193, 114865. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.-H. Recent Advances in Ni-Mediated Ethylene Chain Growth: Nimine-Donor Ligand Effects on Catalytic Activity, Thermal Stability and Oligo-/Polymer Structure. Coord. Chem. Rev. 2017, 350, 68–83. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Lin, W.; Ma, Y.; Hu, X.; Flisak, Z.; Sun, W.-H. Ethylene Oligomerization with 2-Hydroxymethyl-5,6,7-Trihydroquinolinyl-8-Ylideneamine-Ni(II) Chlorides. J. Organomet. Chem. 2021, 937, 121720. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Q.; Zhang, W.; Liang, T.; Sun, W.-H. The Benzhydryl-Modified 2-Imino-1,10-phenanthrolyliron Precatalyst in Ethylene Oligomerization. J. Organomet. Chem. 2021, 936, 121713. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Ma, Y.; Sun, W.-H. Multinuclear Late Transition Metal Catalysts for Olefin Polymerization. Coord. Chem. Rev. 2021, 434, 213788. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Dechal, A.; Ahmadjo, S.; Mortazavi, S.M.M.; Zohuri, G.; Soares, J.B.P. Amorphous to High Crystalline PE Made by Mono and Dinuclear Fe-Based Catalysts. Eur. Polym. J. 2019, 119, 229–238. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Zohuri, G.H.; Ramezanian, N.; Ahmadjo, S.; Haghpanah, M. Polymerization of Ethylene Using a Series of Binuclear and a Mononuclear Ni (II)-Based Catalysts. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3000–3011. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Dechal, A.; Ahmadjo, S.; Mortazavi, S.M.M.; Zohuri, G.; Soares, J.B.P. Cooperative Effect through Different Bridges in Nickel Catalysts for Polymerization of Ethylene. Appl. Organom Chemis 2019, 33, e4929. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, W.; Solan, G.A.; Zhang, R.; Guo, L.; Hao, X.; Sun, W.-H. CH(phenol)-Bridged Bis(imino)pyridines as Compartmental Supports for Diiron Precatalysts for Ethylene Polymerization: Exploring Cooperative Effects on Performance. Organometallics 2018, 37, 4002–4014. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Dechal, A.; Ahmadjo, S.; Mortazavi, S.M.M.; Zohuri, G.H.; Soares, J.B.P. Synthesis of Poly(α-olefins) Containing Rare Short-Chain Branches by Dinuclear Ni-Based Catalysts. New J. Chem. 2018, 42, 18288–18296. [Google Scholar] [CrossRef]
- Takano, S.; Takeuchi, Y.; Takeuchi, D.; Osakada, K. Selective Formation of Ethyl- and/or Propyl-Branched Oligoethylene Using Double-Decker-Type Dinuclear Fe Complexes as the Catalyst. Chem. Lett. 2014, 43, 465–467. [Google Scholar] [CrossRef]
- Zhang, S.; Vystorop, I.; Tang, Z.; Sun, W.-H. Bimetallic (Iron or Cobalt) Complexes Bearing 2-Methyl-2,4-bis(6-iminopyridin-2-yl)-1 H-1,5-Benzodiazepines for Ethylene Reactivity. Organometallics 2007, 26, 2456–2460. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Liu, J.; Li, Z. Ethylene Polymerization with a Highly Active and Long-Lifetime Macrocycle Trinuclear 2,6-Bis(imino)pyridyliron. Macromolecules 2005, 38, 2559–2563. [Google Scholar] [CrossRef]
- Takeuchi, D.; Takano, S.; Takeuchi, Y.; Osakada, K. Ethylene Polymerization at High Temperatures Catalyzed by Double-Decker-Type Dinuclear Iron and Cobalt Complexes: Dimer Effect on Stability of the Catalyst and Polydispersity of the Product. Organometallics 2014, 33, 5316–5323. [Google Scholar] [CrossRef]
- Reinhart, E.D.; Jordan, R.F. Synthesis and Ethylene Reactivity of Dinuclear Iron and Cobalt Complexes Supported by Macrocyclic Bis(pyridine-diimine) Ligands Containing o-Terphenyl Linkers. Organometallics 2020, 39, 2392–2404. [Google Scholar] [CrossRef]
- Khoshsefat, M.; Ahmadjo, S.; Zohuri, G.H.; Ma, Y.; Sun, W.-H. From Tetramerization to Oligomerization/Polymerization of Ethylene by Dinuclear Pyridyl-imine Co- and Ni-Based Catalysts. Appl. Organom Chemis 2023, 37, e7226. [Google Scholar] [CrossRef]
- Reinhart, E.D.; Jordan, R.F. Template-Free Synthesis of a Macrocyclic Bis(pyridine-dienamine) Proligand and Metal Complexes of Its Bis(pyridine-diimine) and Bis(pyridine-dienamido) Forms. Inorg. Chem. 2019, 58, 15466–15478. [Google Scholar] [CrossRef]
- Hujon, F.; Lyngdoh, R.H.D.; Schaefer, H.F.; King, R.B. Binuclear Cobalt Paddlewheel-Type Complexes: Relating Metal–Metal Bond Lengths to Formal Bond Orders. Inorg. Chem. 2021, 60, 584–596. [Google Scholar] [CrossRef]
- Cao, R.; Lai, W.; Du, P. Catalytic Water Oxidation at Single Metal Sites. Energy Environ. Sci. 2012, 5, 8134–8157. [Google Scholar] [CrossRef]
- Reger, D.L.; Pascui, A.E.; Foley, E.A.; Smith, M.D.; Jezierska, J.; Wojciechowska, A.; Stoian, S.A.; Ozarowski, A. Dinuclear Metallacycles with Single M–X–M Bridges (X = Cl−, Br−; M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)): Strong Antiferromagnetic Superexchange Interactions. Inorg. Chem. 2017, 56, 2884–2901. [Google Scholar] [CrossRef]
- Van Leest, N.P.; Stroek, W.; Siegler, M.A.; Van Der Vlugt, J.I.; De Bruin, B. Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex. Inorg. Chem. 2020, 59, 12903–12912. [Google Scholar] [CrossRef]
- Charra, V.; de Frémont, P.; Braunstein, P. Multidentate N-Heterocyclic Carbene Complexes of the 3d Metals: Synthesis, Structure, Reactivity and Catalysis. Coord. Chem. Rev. 2017, 341, 53–176. [Google Scholar] [CrossRef]
- Durham, B.; Endicott, J.F.; Wong, C.-L.; Rillema, D.P. Oxidation-Reduction Reactions of Complexes with Macrocyclic Ligands. Halide-Mediated Electron Transfer Involving Low-Spin Cobalt(III)-(II) Couples. J. Am. Chem. Soc. 1979, 101, 847–857. [Google Scholar] [CrossRef]
- Monney, A.; Albrecht, M. Transition Metal Bioconjugates with an Organometallic Link Between the Metal and the Biomolecular Scaffold. Coord. Chem. Rev. 2013, 257, 2420–2433. [Google Scholar] [CrossRef]
- Davenport, T.C.; Tilley, T.D. Dinuclear First-Row Transition Metal Complexes with a Naphthyridine-Based Dinucleating Ligand. Dalton Trans. 2015, 44, 12244–12255. [Google Scholar] [CrossRef]
- Dammann, W.; Buban, T.; Schiller, C.; Burger, P. Dinuclear Tethered Pyridine, Diimine Complexes. Dalton Trans. 2018, 47, 12105–12117. [Google Scholar] [CrossRef]
- Cotton, S.A. Iron(III) Chloride and Its Coordination Chemistry. J. Coord. Chem. 2018, 71, 3415–3443. [Google Scholar] [CrossRef]
- Senda, S.; Ohki, Y.; Hirayama, T.; Toda, D.; Chen, J.-L.; Matsumoto, T.; Kawaguchi, H.; Tatsumi, K. Mono{hydrotris(mercaptoimidazolyl)borato} Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II) Halides. Inorg. Chem. 2006, 45, 9914–9925. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; Mastroianni, S.; McTavish, S.J.; Redshaw, C.; Solan, G.A.; Strömberg, S.; et al. Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6-Bis(imino)pyridyl Ligands: Synthesis, Structures, and Polymerization Studies. J. Am. Chem. Soc. 1999, 121, 8728–8740. [Google Scholar] [CrossRef]
- Wang, M.; Wu, W.; Wang, X.; Huang, X.; Nai, Y.; Wei, X.; Mao, G. Research Progress of Iron-Based Catalysts for Selective Oligomerization of Ethylene. RSC Adv. 2020, 10, 43640–43652. [Google Scholar] [CrossRef]
- Peng, A.; Huang, Z.; Li, G. Ethylene Oligomerization Catalyzed by Different Homogeneous or Heterogeneous Catalysts. Catalysts 2024, 14, 268. [Google Scholar] [CrossRef]
- Chen, E.Y.-X.; Marks, T.J. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure−Activity Relationships. Chem. Rev. 2000, 100, 1391–1434. [Google Scholar] [CrossRef] [PubMed]
Entry | Cat. | [Al]/[Co] | T (°C) | P (bar) | Yield (g) | Activity b | Distribution of Oligomer c (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
C4 | C6 | C8 | α-C8/ƩC8 | α-C8/ƩCn | |||||||
1 | FC | 1500 | 25 | 2 | 1.61 | 8.05 | 0.0 | 0.3 | 99.1 | 96.4 | 90.6 |
2 | FC | 1500 | 25 | 4 | 1.89 | 9.45 | 0.0 | 0.0 | 98.9 | 96.6 | 91.0 |
3 | CC | 1500 | 25 | 2 | 1.03 | 5.15 | 0.0 | 2.3 | 96.2 | 95.8 | 93.9 |
4 | CC | 1500 | 25 | 4 | 1.75 | 8.75 | <1 | 1.5 | 95.0 | 96.1 | 94.4 |
Entry | Cat. | [Al]/[Co] | T (°C) | P (bar) | Yield (g) | Activity b | Distribution of Oligomer c (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
C4 | C6 | C8 | α-C8/ƩC8 | α-C8/ƩCn | |||||||
5 | CC | 1500 | 50 | 2 | 0.95 | 4.75 | 3.5 | 3.1 | 93.1 | 96.1 | 98.7 |
6 | CC | 1500 | 75 | 2 | 0.67 | 3.35 | 6.1 | 2.2 | 91.2 | 96.3 | >99 |
7 | FC | 1500 | 50 | 2 | 1.49 | 7.45 | 1.2 | 1.1 | 97.5 | 97.2 | 98.4 |
8 | FC | 1500 | 75 | 2 | 1.15 | 5.75 | 2.2 | 1.0 | 96.7 | 97.3 | >99 |
9 | FC | 2500 | 25 | 2 | 1.57 | 7.85 | 1.1 | <1 | 98.3 | 95.2 | 89.3 |
10 | FC | 3500 | 25 | 2 | 0.71 | 3.55 | 1.9 | 1.0 | 96.8 | 94.8 | 88.9 |
11 | FC | 1500 | 25 | 1 | 0.99 | 4.95 | 0.0 | <1 | >99 | 96.3 | 91.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoshsefat, M.; Ma, Y.; Sun, W.-H. Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization. Materials 2025, 18, 2123. https://doi.org/10.3390/ma18092123
Khoshsefat M, Ma Y, Sun W-H. Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization. Materials. 2025; 18(9):2123. https://doi.org/10.3390/ma18092123
Chicago/Turabian StyleKhoshsefat, Mostafa, Yanping Ma, and Wen-Hua Sun. 2025. "Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization" Materials 18, no. 9: 2123. https://doi.org/10.3390/ma18092123
APA StyleKhoshsefat, M., Ma, Y., & Sun, W.-H. (2025). Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization. Materials, 18(9), 2123. https://doi.org/10.3390/ma18092123