Ultra-Low Core Loss and High-Frequency Permeability Stability in Hot-Press Sintered FeSi Soft Magnetic Composites by Fe2O3 Nanoparticles Air Gap Filling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Liu, X.; Wang, J.; Mao, X.; Xu, X. The influence of Fe nanoparticles on microstructure and magnetic properties of Fe-6.5 wt% Si soft magnetic composites. J. Alloys Compd. 2020, 835, 155215. [Google Scholar] [CrossRef]
- Perigo, E.A.; Weidenfeller, B.; Kollár, P.; Füzer, J. Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 2018, 5, 031301. [Google Scholar] [CrossRef]
- Peng, Y.; Nie, J.; Zhang, W.; Ma, J.; Bao, C.; Cao, Y. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites. J. Magn. Magn. Mater. 2016, 399, 88–93. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Zhang, Q.; Xu, W.; Logan, P.; Volinsky, A.A. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites. J. Magn. Magn. Mater. 2012, 324, 818–822. [Google Scholar] [CrossRef]
- He, W.; Li, H.; Han, X.; Wang, X.; Wang, G.; Zhang, X.; Shcheretskyi, O. High-temperature dry sliding friction and wear behavior of in-situ (Al3Zr + ZrB2)/AA6016 aluminum matrix composites. Mater. Today Commun. 2024, 39, 108951. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Jiao, L.; Zhang, X.; Wang, X.; Shen, W.; Zhang, C. Effect of rotational speed on friction stir welding microstructure and properties of cast and rolled (ZrB2 + Al3Zr) particle-reinforced aluminum matrix composites. J. Mater. Sci. 2024, 59, 18734–18755. [Google Scholar] [CrossRef]
- Wu, Y.; Bitoh, T.; Hono, K.; Makino, A.; Inoue, A. Microstructure and properties of nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with low magnetostriction. Acta Mater. 2001, 49, 4069–4077. [Google Scholar] [CrossRef]
- Kim, Y.B.; Jang, D.; Seok, H.; Kim, K. Fabrication of Fe–Si–B based amorphous powder cores by cold pressing and their magnetic properties. Mater. Sci. Eng. A 2007, 449, 389–393. [Google Scholar] [CrossRef]
- Schoppa, A.; Delarbre, P. Soft magnetic powder composites and potential applications in modern electric machines and devices. IEEE Trans. Magn. 2014, 50, 2004304. [Google Scholar] [CrossRef]
- Gilbert, I.; Moorthy, V.; Bull, S.; Evans, J.; Jack, A. Development of soft magnetic composites for low-loss applications. J. Magn. Magn. Mater. 2002, 242, 232–234. [Google Scholar] [CrossRef]
- Sundar, R.; Deevi, S. Soft magnetic FeCo alloys: Alloy development, processing, and properties. Int. Mater. Rev. 2005, 50, 157–192. [Google Scholar] [CrossRef]
- Streckova, M.; Medvecky, L.; Füzer, J.; Kollár, P.; Bures, R.; Faberova, M. Design of novel soft magnetic composites based on Fe/resin modified with silica. Mater. Lett. 2013, 101, 37–40. [Google Scholar] [CrossRef]
- Schäfter, T.; Burghaus, J.; Pieper, W.; Petzoldt, F.; Busse, M. New concept of Si–Fe based sintered soft magnetic composite. Powder Metall. 2015, 58, 106–111. [Google Scholar] [CrossRef]
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft magnetic material status and trends in electric machines. IEEE Trans. Ind. Electron. 2016, 64, 2405–2414. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, S.; Peng, K. Magnetic properties regulation and loss contribution analysis of FeSi soft magnetic composites doped by carbonyl iron powders. J. Magn. Magn. Mater. 2023, 568, 170423. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, W.; Luo, F.; Li, Y.; Wang, J.; Liu, X. Enhanced magnetic properties and reduced core loss of intergranular insulating Fe-Si soft magnetic composites with three-shell SiO2-Fe2SiO4-SiO2 insulating layer. J. Solid State Chem. 2019, 270, 311–316. [Google Scholar] [CrossRef]
- Fan, X.; Wu, Z.; Li, G.; Wang, J.; Xiang, Z.; Gan, Z. High resistivity and low core loss of intergranular insulated Fe–6.5 wt.% Si/SiO2 composite compacts. Mater. Des. 2016, 89, 1251–1258. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Zhang, X.; Xiao, J.Q. Submicrometer Laminated Fe/SiO2 Soft Magnetic Composites—An Effective Route to Materials for High-Frequency Applications. Adv. Mater. 2005, 17, 915–918. [Google Scholar] [CrossRef]
- Frayman, L.; Quinn, S.; Quinn, R.; Green, D.; Hanejko, F. Advanced soft magnetic composite materials for AC applications with reduced iron losses. Powder Metall. 2015, 58, 335–338. [Google Scholar] [CrossRef]
- Wang, M.; Zan, Z.; Deng, N.; Zhao, Z. Preparation of pure iron/Ni–Zn ferrite high strength soft magnetic composite by spark plasma sintering. J. Magn. Magn. Mater. 2014, 361, 166–169. [Google Scholar] [CrossRef]
- Páez-Pavón, A.; Jiménez-Morales, A.; Santos, T.; Quintino, L.; Torralba, J. Influence of thermal debinding on the final properties of Fe–Si soft magnetic alloys for metal injection molding (MIM). J. Magn. Magn. Mater. 2016, 416, 342–347. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, Y.; Cao, P.; Du, J.; Lin, Z.; Wang, R.; Jin, L.; Lian, L.; Harris, V.G. Cold Sintered Metal–Ceramic Nanocomposites for High-Frequency Inductors. Adv. Electron. Mater. 2020, 6, 2000868. [Google Scholar] [CrossRef]
- Fu, H.; Mo, Y.; Zhang, Z.; Xie, J. Ultra-low deformation rate sensitivity of columnar-grained Fe-6.5 wt% Si alloy with <100> orientation. Mater. Sci. Eng. A 2016, 656, 90–93. [Google Scholar]
- Fu, H.; Zhang, Z.; Jiang, Y.; Xie, J. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5 wt% Si alloy. J. Alloys Compd. 2016, 689, 307–312. [Google Scholar] [CrossRef]
- Li, W.; Xiao, S.; Li, W.; Ying, Y.; Yu, J.; Zheng, J.; Qiao, L.; Li, J.; Naoki, W.; Wu, J. Hybrid amorphous soft magnetic composites with ultrafine FeSiBCr and submicron FeBP particles for MHz frequency power applications. J. Magn. Magn. Mater. 2022, 555, 169365. [Google Scholar] [CrossRef]
- Liu, M.; Huang, K.; Liu, L.; Li, T.; Cai, P.; Dong, Y.; Wang, X.-M. Fabrication and magnetic properties of novel Fe-based amorphous powder and corresponding powder cores. J. Mater. Sci. Mater. Electron. 2018, 29, 6092–6097. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Li, J.; Chen, X.; Han, G.; Yang, J.; Chen, R. Enhancing the properties of FeSiBCr amorphous soft magnetic composites by annealing treatments. Metals 2022, 12, 828. [Google Scholar] [CrossRef]
- Haibo, S.; Ce, W.; Changbao, Z.; Jinghui, W. High-frequency loss analysis and related magnetic properties of Fe-based amorphous soft magnetic composites with different granularity matches. J. Appl. Phys. 2022, 131, 193903. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Pauly, S.; Chang, C.; Wei, R.; Li, F.; Wang, X.-M. Enhanced soft magnetic properties of Fe-based amorphous powder cores by longitude magnetic field annealing. J. Alloys Compd. 2017, 706, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zeng, Q.; Hang, G.; Xue, Z.; Chen, D.; Liang, Z.; Sun, H. Magnetic properties regulation and loss contribution analysis for Fe-based amorphous powder cores doped with micron-sized FeSi powders. J. Magn. Magn. Mater. 2020, 510, 166931. [Google Scholar] [CrossRef]
- Shi, G.; Li, M.; Wang, H.; Yin, G.; Wang, M.; Wang, L. Effect of the shape and content for added iron powder on properties of nanocrystalline soft magnetic composites. Mater. Today Commun. 2024, 39, 108888. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, J.; Yang, Y.; Jiao, L.; Dong, Y.; Liu, X.; Liu, Z.; Wu, S.; Li, X.; He, A. The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites. Adv. Powder Technol. 2022, 33, 103663. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Lei, C.; Mao, X.; Liu, D.; Luo, Z.; Luo, F. Core loss reduction for Fe-6.5 wt% Si soft magnetic composites doped with Co element. J. Magn. Magn. Mater. 2020, 502, 166553. [Google Scholar] [CrossRef]
- Luo, F.; Luo, Z.; Hu, W.; Wang, J.; Wu, Z.; Li, G.; Li, Y.; Liu, X. Influences of Fe2O3 content on structure and magnetic performances of FeSiAl soft magnetic composites. Mater. Res. Express 2019, 6, 116106. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Zhu, Z.; Zhao, H.; Pang, J.; Wang, P.; Zhang, J. Fe-based amorphous magnetic powder cores with low core loss fabricated by novel gas–water combined atomization powders. Materials 2022, 15, 6296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, W.; Yuan, W.; Peng, K. Preparation and magnetic properties of core–shell structured Fe-Si/Fe3O4 composites via in-situ reaction method. J. Magn. Magn. Mater. 2021, 531, 167955. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Guo, W.; Zhang, R.; Xu, F. Ultra-low core loss and high permeability Fe-based amorphous soft magnetic composites with ultra-fine FeNi additives. J. Mater. Sci. Mater. Electron. 2024, 35, 1655. [Google Scholar] [CrossRef]
- Anhalt, M.; Weidenfeller, B. Theoretical and experimental approach to characteristic magnetic measurement data of polymer bonded soft magnetic composites. J. Appl. Phys. 2009, 105, 113903. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Y.; Liu, X.; Lu, H.; Wu, Y.; Zhang, H.; He, A.; Li, J.; Wang, X. Microstructure and soft magnetic properties of Fe85−xSi9.6Al5.4Tix composite magnetic powder cores. J. Alloys Compd. 2021, 885, 160924. [Google Scholar] [CrossRef]
- Abdel-Aal, S.K.; Abdel-Rahman, A.S. Fascinating physical properties of 2D hybrid perovskite [(NH3)(CH2)7(NH3)]CuClxBr4−x, x = 0, 2 and 4. J. Electron. Mater. 2019, 48, 1686–1693. [Google Scholar] [CrossRef]
- Wu, T.; Ju, D.; Wang, C.; Huang, H.; Li, C.; Wu, C.; Wang, C.; Liu, H.; Jiang, X.; Ye, K. Ferrite materials with high saturation magnetic induction intensity and high permeability for magnetic field energy harvesting: Magnetization mechanism and Brillouin function temperature characteristics. J. Alloys Compd. 2023, 933, 167654. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, R.; He, Y.; Kong, H.; Li, S.; Wu, Z. Effects of axial pressure on the evolution of core–shell heterogeneous structures and magnetic properties of Fe–Si soft magnetic powder cores during hot-press sintering. RSC Adv. 2022, 12, 19875–19884. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, Y.; Kong, H.; Wang, J.; Wu, Z.; Wang, H. Influence of sintering temperature on heterogeneous-interface structural evolution and magnetic properties of Fe–Si soft magnetic powder cores. Ceram. Int. 2022, 48, 29854–29861. [Google Scholar] [CrossRef]
- Wang, R.; Huang, H.; Li, K.; Yang, J.; Wu, Z.; Kong, H. Design and evolution of Fe–Si–Al soft magnetic composites doped with carbonyl iron powders: Overcoming the restrictive relation between permeability and core loss. Ceram. Int. 2024, 50, 17861–17872. [Google Scholar] [CrossRef]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Zhang, Y.; Huijuan, J.; Ying, S. General properties of low-frequency power losses in Fe-based nanocrystalline soft magnetic alloys. J. Mater. Sci. Technol. 2000, 16, 37. [Google Scholar]
- Füzerová, J.; Füzer, J.; Kollár, P.; Bureš, R.; Fáberová, M. Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores. J. Magn. Magn. Mater. 2013, 345, 77–81. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, A.; Li, J.; Yu, S.; Chang, J.; Ge, M.; Yang, Y.; Xu, J.; Hong, B.; Jin, D. Design and fabrication of Fe–Si–Al soft magnetic composites by controlling orientation of particles in a magnetic field: Anisotropy of structures, electrical and magnetic properties. J. Mater. Sci. 2019, 54, 8719–8726. [Google Scholar] [CrossRef]
- Choi, Y.J.; Ahn, J.H.; Kim, D.H.; Kim, Y.R.; Lee, B.W. Core-loss reduction of Fe–Si–Cr crystalline alloy according to particle size in the high frequency band. Curr. Appl. Phys. 2022, 39, 324–330. [Google Scholar] [CrossRef]
- Wu, S.; Dong, Y.; Li, X.; Gong, M.; Zhao, R.; Gao, W.; Wu, H.; He, A.; Li, J.; Wang, X. Microstructure and magnetic properties of FeSiCr soft magnetic powder cores with a MgO insulating layer prepared by the sol-gel method. Ceram. Int. 2022, 48, 22237–22245. [Google Scholar] [CrossRef]
Contents wt% | 0 wt% | 1 wt% | 2 wt% | 3 wt% | 4 wt% | 5 wt% |
---|---|---|---|---|---|---|
Ms | 187.6 | 191.21 | 191.31 | 189.36 | 188.98 | 189.9 |
Hc | 12.27 | 11.83 | 11.55 | 12.27 | 12.75 | 10.78 |
Contents wt% | Pcv(kW/m3) f = 100 kHz, Bm = 10 mT | Ph(kW/m3) f = 100 kHz, Bm = 10 mT | Pe(kW/m3) f = 100 kHz, Bm = 10 mT | μe | ρ (g/cm3) | ρ (mΩ-cm) |
---|---|---|---|---|---|---|
0 | 25.63 | 19.02 | 6.61 | 21.57 | 6.56 | 29.55 |
1 | 26.68 | 21.61 | 5.07 | 25.89 | 6.88 | 30.23 |
2 | 43.45 | 18.11 | 25.33 | 30.05 | 7.12 | 34.18 |
3 | 18.05 | 14.43 | 4.38 | 22.51 | 6.94 | 36.34 |
4 | 49.26 | 33.19 | 16.07 | 21.29 | 6.79 | 40.96 |
5 | 16.13 | 11.97 | 4.153 | 18.67 | 6.71 | 50.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, M.; Han, D.; Shin, W.; Cha, S.; Pak, C.; Kim, Y.; Kim, S.; Lee, B.; Rhyee, J. Ultra-Low Core Loss and High-Frequency Permeability Stability in Hot-Press Sintered FeSi Soft Magnetic Composites by Fe2O3 Nanoparticles Air Gap Filling. Materials 2025, 18, 2013. https://doi.org/10.3390/ma18092013
Arif M, Han D, Shin W, Cha S, Pak C, Kim Y, Kim S, Lee B, Rhyee J. Ultra-Low Core Loss and High-Frequency Permeability Stability in Hot-Press Sintered FeSi Soft Magnetic Composites by Fe2O3 Nanoparticles Air Gap Filling. Materials. 2025; 18(9):2013. https://doi.org/10.3390/ma18092013
Chicago/Turabian StyleArif, Muhammad, Donghun Han, Wonchan Shin, Seunghun Cha, Changsun Pak, Youngkwang Kim, Sangwoo Kim, Bowha Lee, and Jongsoo Rhyee. 2025. "Ultra-Low Core Loss and High-Frequency Permeability Stability in Hot-Press Sintered FeSi Soft Magnetic Composites by Fe2O3 Nanoparticles Air Gap Filling" Materials 18, no. 9: 2013. https://doi.org/10.3390/ma18092013
APA StyleArif, M., Han, D., Shin, W., Cha, S., Pak, C., Kim, Y., Kim, S., Lee, B., & Rhyee, J. (2025). Ultra-Low Core Loss and High-Frequency Permeability Stability in Hot-Press Sintered FeSi Soft Magnetic Composites by Fe2O3 Nanoparticles Air Gap Filling. Materials, 18(9), 2013. https://doi.org/10.3390/ma18092013