Strength, Durability, and Microscopic Analysis of Silt Solidified with Two-Phase Phosphogypsum and Cement Fiber
Abstract
1. Introduction
2. Research Program
3. Materials and Methods
3.1. Materials
3.2. Mixture Proportion
3.3. Sample Preparation
- (1)
- Preparation of silty soil: The test soil is soaked in water until saturated, and the silty soil is prepared with a moisture content of 75%.
- (2)
- Material mixing: The PP is pre-crushed, and the cement is mixed with NS to form a slurry at a water-to-cement proportion of 1:0.5, following the Design Code for Cement–Soil Mixture Proportions (JGJT 233-2011-5.0.3). Finally, the slurry is mixed with PP and silty soil according to the specified proportions using a mini electric mixer produced by Guangdong CHIGO Instrument Co., Ltd. for 10 min.
- (3)
- Molding: The inner walls of the mold are evenly coated with petroleum jelly to facilitate demolding. The mold is filled in three layers, thoroughly compacting each layer to expel air bubbles and ensure the sample is dense.
- (4)
- Demolding and curing: The sample is allowed to cure for approximately 12 h and then demolded. The demolded sample is wrapped in preservative film and placed in a sealed bag. Then, it is stored in a curing chamber at a temperature of (25 ± 2) °C and humidity greater than 90% until the specified curing age is reached.
3.4. Test Methods
3.4.1. Unconfined Compressive Strength Tests
3.4.2. Water Resistance Tests
- (1)
- Water absorption rate
- (2)
- Softening coefficient
3.4.3. Freeze–Thaw Cycle Tests
3.4.4. X-Ray Diffraction (XRD) Analysis
3.4.5. Scanning Electron Microscope (SEM) Observation
4. Result and Discussion
4.1. Unconfined Compressive Strength
4.2. Analysis of Failure Forms
4.3. Stress–Strain Curve
4.4. Modulus of Deformation
4.5. Water Resistance
4.6. Freeze–Thaw Cycle
4.7. Microscopic Analysis
4.7.1. XRD Analysis
4.7.2. SEM Observation
5. Conclusions
- (1)
- Both the total content of phosphogypsum and the proportion of BHPG in two-phase phosphogypsum exhibit optimal values. Specifically, when the content of two-phase phosphogypsum is 5% and the proportion of BHPG is 20%, the unconfined compressive strength of solidified silt reaches its peak at 1.42 MPa. At the same time, the strain, stress, and deformation modulus of solidified silt are optimal. However, as the BHPG content continues to increase beyond this point, the degree of brittle damage in the solidified silt initially increases and subsequently decreases.
- (2)
- The incorporation of NS substantially enhanced the water resistance and freeze–thaw resistance of the solidified silt. The softening coefficient improved by 26.8% to 40.8%, reaching a maximum of 0.85. The frost resistance index increased from 36.9% to 23.92%. These findings indicate that NS improves the water stability and freeze–thaw resistance of solidified silt through the supplementation of sulfate ions.
- (3)
- When the content of BHPG in the two-phase phosphogypsum is 20%, a large number of AFt crystals are generated, significantly enhancing the strength. The addition of NS further promotes the formation of AFt, thereby improving the strength and durability of the solidified silt. However, when the contents of the two-phase phosphogypsum and BHPG are too high, the unencapsulated 2HPG particles scatter in the system. This scattering phenomenon compromises the structural integrity and ultimately reduces the strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Cheng, Y.; Cai, G.; Guo, J.; Li, Y.F. Experimental analysis of mechanical properties of dredged sludge solidified by carbonized under the synergistic action of magnesium oxychloride cement and lime. Constr. Build. Mater. 2024, 447, 138059. [Google Scholar] [CrossRef]
- Patmont, C.; LaRosa, P.; Narayanan, R.; Forrest, C. Environmental Dredging Residual Generation and Management. Integr. Environ. Assess. Manag. 2018, 14, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lang, L.; Liu, N.; Chen, B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Constr. Build. Mater. 2020, 230, 116971. [Google Scholar] [CrossRef]
- Beddaa, H.; Ouazi, I.; Fraj, A.B.; Lavergne, F.; Torrenti, J. Reuse potential of dredged river sediments in concrete: Effect of sediment variability. J. Clean. Prod. 2020, 265, 121665. [Google Scholar] [CrossRef]
- Li, W.T.; Yi, Y.L.; Puppala, A.J. Comparing carbide sludge-ground granulated blastfurnace slag and ordinary Portland cement: Different findings from binder paste and stabilized clay slurry. Constr. Build. Mater. 2022, 321, 126382. [Google Scholar] [CrossRef]
- Zeng, L.L.; Hong, Z.S.; Tian, W.B.; Shi, J.W. Settling behavior of clay suspensions produced by dredging activities in China. Mar. Georesources Geotechnol. 2018, 36, 30–37. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, X.; Pan, H.; Yang, X.; Zhang, X.; Lyu, Y.; Liao, W.; Shui, W.; Wu, J.; Xu, M.; et al. Investigating effects of phosphogypsum disposal practices on the environmental performance of phosphate fertilizer production using emergy analysis and carbon emission amounting: A case study from China. J. Clean. Prod. 2023, 409, 137248. [Google Scholar] [CrossRef]
- Liu, S.L.; Wang, Y.M.; Wu, A.X.; Liu, P.P.; Chang, Y.J.; Ruan, Z.E. Performance evolution of alkali-activated phosphorus slag paste filling material: Effect of hemihydrate phosphogypsum content. Process Saf. Environ. Prot. 2024, 187, 736–748. [Google Scholar] [CrossRef]
- Huang, Y.B.; Qian, J.S.; Kang, X.J.; Yu, J.C.; Fan, Y.R.; Dang, Y.D.; Zhang, W.S.; Wang, S.D. Belite-calcium sulfoaluminate cement prepared with phosphogypsum: Influence of P2O5 and F on the clinker formation and cement performances. Constr. Build. Mater. 2019, 203, 432–442. [Google Scholar] [CrossRef]
- Wang, C.Q.; Xiong, D.M.; Chen, Y.; Wu, K.; Tu, M.J.; Wang, P.X.; Zhang, Z.J.; Zhou, L. Characteristic pollutant purification analysis of modified phosphogypsum comprehensive utilization. Environ. Sci. Pollut. Res. 2022, 29, 67456–67465. [Google Scholar] [CrossRef]
- Qin, X.T.; Cao, Y.H.; Guan, H.W.; Hu, Q.S.; Liu, Z.H.; Xu, J.; Hu, B.; Zhang, Z.Y.; Luo, R. Resource utilization and development of phosphogypsum-based materials in civil engineering. J. Clean. Prod. 2023, 387, 135858. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Xie, Z.W.; Wang, J.; Wang, P.; Geng, X.Y. New approach of vacuum preloading with booster prefabricated vertical drains (PVDs) to improve deep marine clay strata. Can. Geotech. J. 2018, 55, 1359–1371. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.Y.; Fu, H.T.; Ding, G.Y.; Cai, Y.Q.; Geng, X.Y.; Shi, C.X. Effect of Surcharge Loading Rate and Mobilized Load Ratio on the Performance of Vacuum-Surcharge Preloading with PVDs. Geotext. Geomembr. 2019, 47, 121–127. [Google Scholar] [CrossRef]
- Xie, Z.W.; Wang, J.; Fu, H.T.; Cai, Y.Q.; Xiuqing, H.; Cai, Y.; Zhang, Y.; Ma, X.H.; Jin, H.S. Effect of Pressurization Positions on the Consolidation of Dredged Slurry in Air-Booster Vacuum Preloading Method. Mar. Georesources Geotechnol. 2020, 38, 122–131. [Google Scholar] [CrossRef]
- Dahal, B.K.; Zheng, J.J.; Zhang, R.J.; Song, D.B. Enhancing the mechanical properties of marine clay using cement solidification. Mar. Georesources Geotechnol. 2019, 37, 755–764. [Google Scholar] [CrossRef]
- Pu, S.Y.; Zhu, Z.D.; Zhao, L.M.; Song, W.L.; Wan, Y.; Huo, W.W.; Wang, H.R.; Yao, K.; Hu, L.L. Microstructural properties and compressive strength of lime or/and cement solidified silt: A multi-scale study. Bull. Eng. Geol. Environ. 2020, 79, 5141–5159. [Google Scholar] [CrossRef]
- Liu, F.Y.; Zhu, C.G.; Yang, K.G.; Ni, J.F.; Hai, J.; Gao, S.H. Effects of fly ash and slag content on the solidification of river-dredged sludge. Mar. Georesources Geotechnol. 2021, 39, 65–73. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, X.P.; Cui, Z.F.; Ye, Y.G.; He, S.P.; Zhou, H.Y.; Yi, K.; Zhu, S.Y. Investigation on Engineering Characteristics of Lime-Stabilized Phosphogypsum Subgrade Filler. J. Mater. Civ. Eng. 2024, 36, 04024028. [Google Scholar] [CrossRef]
- Ding, J.W.; Zhang, S.; Hong, Z.S.; Liu, S.Y. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously. Rock Soil Mech. 2010, 31, 2817–2822. (In Chinese) [Google Scholar]
- Zeng, L.L.; Bian, X.; Zhao, L.; Wang, Y.J.; Hong, Z.-S. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. Geomech. Energy Environ. 2021, 25, 100195. [Google Scholar] [CrossRef]
- Ou, L.; Zhu, H.Z.; Zhao, H.D.; Li, X.; Tang, H.; Su, C.L. Cement-Stabilized Phosphogypsum Synergistized with Curing Agent as Sustainable Pavement Base Materials. J. Mater. Civ. Eng. 2024, 36, 04024291. [Google Scholar] [CrossRef]
- Bian, X.; Zeng, L.L.; Ji, F.; Xie, M.; Hong, Z.S. Plasticity role in strength behavior of cement-phosphogypsum stabilized soils. J. Rock Mech. Geotech. Eng. 2022, 14, 1977–1988. [Google Scholar] [CrossRef]
- López, F.A.; Tayibi, H.; García-Díaz, I.; Alguacil, F.J. Thermal dehydration kinetics of phosphogypsum. Mater. Constr. 2015, 65, 1977–1988. [Google Scholar] [CrossRef]
- Saenko, Y.V.; Shiranov, A.M.; Nevzorov, A.L. Geotechnical properties of hemihydrate and dihydrate phosphogypsum. J. Phys. Conf. Ser. 2021, 1928, 012017. [Google Scholar] [CrossRef]
- Estabragh, A.R.; Namdar, P.; Javadi, A.A. Behavior of cement-stabilized clay reinforced with nylon fiber. Geosynth. Int. 2012, 19, 85–92. [Google Scholar] [CrossRef]
- Wang, H.S.; Tang, C.S.; Gu, K.; Shi, B.; Inyang, H.I. Mechanical behavior of fiber-reinforced, chemically stabilized dredged sludge. Bull. Eng. Geol. Environ. 2020, 79, 629–643. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, D.X.; Tang, C.Y.; Chen, Y.R. Optimization of synergy between cement, slag, and phosphogypsum for marine soft clay solidification. Constr. Build. Mater. 2023, 374, 130902. [Google Scholar] [CrossRef]
- Chen, R.M.; Jian, W.B.; Zhang, X.F.; Fang, Z.H. Experimental study on performance of sludge stabilized by CSFG-FR synergy. Rock Soil Mech. 2022, 43, 1020–1030. (In Chinese) [Google Scholar]
- Zhang, L.J.; Mo, K.H.; Yap, S.P.; Gencel, O.; Ling, T.C. Mechanical strength, water resistance and drying shrinkage of lightweight hemihydrate phosphogypsum-cement composite with ground granulated blast furnace slag and recycled waste glass. Constr. Build. Mater. 2022, 345, 128232. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, F.; Wu, X.T.; Jiao, Y.Y.; Sun, T.; Li, Z.W.; Yang, F.; Li, H.; Li, B.; Xu, J.; et al. Retardation mechanism of phosphogypsum in phosphogypsum-based excess-sulfate cement. Constr. Build. Mater. 2024, 428, 136293. [Google Scholar] [CrossRef]
Relative Density | Plastic Limit | Liquid Limit | Organic Matter Content |
---|---|---|---|
1.50 | 38.1 | 20.7 | 3.21 |
Composition Content | CaO | SO3 | SiO2 | P2O5 | Al2O3 | MgO | As2O5 | Cr2O5 | BaO | F | Crystal Water |
---|---|---|---|---|---|---|---|---|---|---|---|
PG | 30.61 | 40.10 | 4.61 | 1.49 | 2.15 | 0.01 | 0.58 | 0.01 | 0.06 | 0.14 | 18.27 |
Composition Content | CaO | SO3 | SiO2 | P2O5 | Al2O3 | MgO |
---|---|---|---|---|---|---|
OPC | 62.01 | 4.01 | 21.60 | 0.19 | 5.15 | 1.01 |
Diameter/μm | Tensile Strength/MPa | Elastic Modulus/GPa | Acid–Alkali Resistance | Maximum Elongation/% | Density/(g·cm−3) | Melting Point /°C | Effect of Self-Dispersal |
---|---|---|---|---|---|---|---|
32.7 | 469 | 4.24 | Extremely strong | 28.4 | 0.91 | 169 | Funkiness |
Two-Phase Phosphogypsum | Silt | Admixture | ||||
---|---|---|---|---|---|---|
BHPG/% | 2HPG/% | BHPG + 2HPG/% | Experiment Soil/% | Cement/% | PP/% | NS/% |
0 | 100 | 0, 5, 10, 15, 20 | 100, 95, 90, 85, 80 | 15 | 0.5 | 7 |
10 | 90 | |||||
20 | 80 | |||||
30 | 70 | |||||
40 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, X.; Xia, J.; Liu, H.; Xiao, T. Strength, Durability, and Microscopic Analysis of Silt Solidified with Two-Phase Phosphogypsum and Cement Fiber. Materials 2025, 18, 1960. https://doi.org/10.3390/ma18091960
Bian X, Xia J, Liu H, Xiao T. Strength, Durability, and Microscopic Analysis of Silt Solidified with Two-Phase Phosphogypsum and Cement Fiber. Materials. 2025; 18(9):1960. https://doi.org/10.3390/ma18091960
Chicago/Turabian StyleBian, Xiaoya, Junjian Xia, Hui Liu, and Tianyu Xiao. 2025. "Strength, Durability, and Microscopic Analysis of Silt Solidified with Two-Phase Phosphogypsum and Cement Fiber" Materials 18, no. 9: 1960. https://doi.org/10.3390/ma18091960
APA StyleBian, X., Xia, J., Liu, H., & Xiao, T. (2025). Strength, Durability, and Microscopic Analysis of Silt Solidified with Two-Phase Phosphogypsum and Cement Fiber. Materials, 18(9), 1960. https://doi.org/10.3390/ma18091960