Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (Pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White Light-emitting Diodes: History, Progress, and Future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Shen, C.; Yang, Y.; Jin, S.; Ming, J.; Feng, H.; Xu, Z. White Light-Emitting Diodes Using Blue and Yellow–Orange-Emitting Phosphors. Optik 2010, 121, 1487–1491. [Google Scholar] [CrossRef]
- Bui, D.A.; Hauser, P.C. Analytical Devices Based on Light-Emitting Diodes—A Review of the State-of-the-Art. Anal. Chim. Acta 2015, 853, 46–58. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Pan, A.; Yang, B.; He, L.; Wu, Y. Rare Earth-Free Luminescent Materials for WLEDs: Recent Progress and Perspectives. Adv. Mater. Technol. 2021, 6, 2000648. [Google Scholar] [CrossRef]
- Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y. Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chem. Rev. 2018, 118, 8889–8935. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Tang, C.-Y.; Wang, C.H.; Tsai, Y.Y.; Chen, C.-H. Investigation on Some Parameters Affecting Optical Degradation of LED Packages During High-Temperature Aging. IEEE Trans. Device Mater. Reliab. 2015, 15, 335–341. [Google Scholar] [CrossRef]
- Caria, A.; Fraccaroli, R.; Pierobon, G.; Castellaro, T.; Mura, G.; Ricci, P.C.; De Santi, C.; Buffolo, M.; Trivellin, N.; Zanoni, E.; et al. Early Failure of High-Power White LEDs for Outdoor Applications under Extreme Electrical Stress: Role of Silicone Encapsulant. Microelectron. Reliab. 2023, 150, 115142. [Google Scholar] [CrossRef]
- Sun, R.; Zhou, D.; Ding, Y.; Wang, Y.; Wang, Y.; Zhuang, X.; Liu, S.; Ding, N.; Wang, T.; Xu, W.; et al. Efficient Single-Component White Light Emitting Diodes Enabled by Lanthanide Ions Doped Lead Halide Perovskites via Controlling Förster Energy Transfer and Specific Defect Clearance. Light Sci. Appl. 2022, 11, 340. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Sabbar, A.; Madhusoodhanan, S.; Al-Kabi, S.; Dong, B.; Wang, J.; Atcitty, S.; Kaplar, R.; Ding, D.; Mantooth, A.; Yu, S.-Q.; et al. High Temperature and Power Dependent Photoluminescence Analysis on Commercial Lighting and Display LED Materials for Future Power Electronic Modules. Sci. Rep. 2019, 9, 16758. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ji, X.; Ma, Z.; Zhang, F.; Qi, X.; Chen, X.; Wu, D.; Liu, Y.; Jia, M.; Li, X.; et al. Healthy and High-Quality Single-Source Lighting Based on Double-Doped Tin Halide Engineering. Laser Photonics Rev. 2023, 17, 2300094. [Google Scholar]
- Chen, Q.; Lun, Z.; Chen, D.; Sun, Y.; Xiong, P.; Li, S.; Xu, S.; Yang, Z. A Novel Extra-Broadband Visible-Emitting Garnet Phosphor for Efficient Single-Component Pc-WLEDs. Inorg. Chem. Front. 2024, 11, 8547–8554. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Tang, X.; Chen, Z.; Li, Y.; Zhao, H.; Wang, S.; Ding, X.; Zhang, Y.; Yao, J. Environment-Friendly Antisolvent Tert-Amyl Alcohol Modified Hybrid Perovskite Photodetector with High Responsivity. Photon. Res. 2021, 9, 781. [Google Scholar]
- Liu, Y.; Ma, Z.; Zhang, J.; He, Y.; Dai, J.; Li, X.; Shi, Z.; Manna, L. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. Adv. Mater. 2025, 2415606. [Google Scholar] [CrossRef]
- Bi, C.; Yao, Z.; Sun, X.; Wei, X.; Wang, J.; Tian, J. Perovskite Quantum Dots with Ultralow Trap Density by Acid Etching-Driven Ligand Exchange for High Luminance and Stable Pure-Blue Light-Emitting Diodes. Adv. Mater. 2021, 33, 2006722. [Google Scholar]
- Zhou, J.; Luo, J.; Rong, X.; Wei, P.; Molokeev, M.S.; Huang, Y.; Zhao, J.; Liu, Q.; Zhang, X.; Tang, J.; et al. Lead-Free Perovskite Derivative Cs2SnCl6−xBrx Single Crystals for Narrowband Photodetectors. Adv. Opt. Mater. 2019, 7, 1900139. [Google Scholar] [CrossRef]
- Tan, Z.; Chu, Y.; Chen, J.; Li, J.; Ji, G.; Niu, G.; Gao, L.; Xiao, Z.; Tang, J. Lead-Free Perovskite Variant Solid Solutions Cs2Sn1-xTexCl6: Bright Luminescence and High Anti-Water Stability. Adv. Mater. 2020, 32, 2002443. [Google Scholar]
- Bryan, P.S.; Ferranti, S.A. Luminescence of Cs2ZrCl6 and Cs2HfCl6. J. Lumin. 1984, 31–32, 117–119. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, D.; Shi, Z.; Qin, C.; Cui, M.; Ma, Z.; Wang, L.; Wang, M.; Ji, X.; Chen, X.; et al. Stable Zero-Dimensional Cesium Indium Bromide Hollow Nanocrystals Emitting Blue Light from Self-Trapped Excitons. Nano Today 2021, 38, 101153. [Google Scholar] [CrossRef]
- Morad, V.; Yakunin, S.; Benin, B.M.; Shynkarenko, Y.; Grotevent, M.J.; Shorubalko, I.; Boehme, S.C.; Kovalenko, M.V. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. Adv. Mater. 2021, 33, 2007355. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, W.; Li, L.; Huang, P.; Gong, Z.; Zhou, Z.; Sun, J.; Yu, Y.; Chen, X. Dual-Band-Tunable White-Light Emission from Bi3+/Te4+ Emitters in Perovskite-Derivative Cs2SnCl6 Microcrystals. Angew. Chem. Int. Edit. 2022, 61, e202116085. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wu, Z.; Lu, M.; Gao, Y.; Li, X.; Bai, X.; Ji, Y.; Zhang, Y. Broadband Emission Origin in Metal Halide Perovskites: Are Self-Trapped Excitons or Ions? Adv. Mater. 2023, 35, 2211088. [Google Scholar] [CrossRef] [PubMed]
- Arfin, H.; Kshirsagar, A.S.; Kaur, J.; Mondal, B.; Xia, Z.; Chakraborty, S.; Nag, A. Ns2Electron (Bi3+ and Sb3+) Doping in Lead-Free Metal Halide Perovskite Derivatives. Chem. Mater. 2020, 32, 10255–10267. [Google Scholar] [CrossRef]
- Zeng, R.; Bai, K.; Wei, Q.; Chang, T.; Yan, J.; Ke, B.; Huang, J.; Wang, L.; Zhou, W.; Cao, S.; et al. Boosting Triplet Self-Trapped Exciton Emission in Te(IV)-Doped Cs2SnCl6 Perovskite Variants. Nano Res. 2021, 14, 1551–1558. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Lv, Q.; Zheng, H.; Zhu, G.; Xu, X.; Wang, Y. Te4+/Bi3+ Co-Doped Double Perovskites with Tunable Dual-Emission for Contactless Light Sensor, Encrypted Information Transmission and White Light Emitting Diodes. Chem. Eng. J. 2022, 431, 134135. [Google Scholar] [CrossRef]
- Gong, S.; Wu, R.; Yang, S.; Wu, L.; Zhang, M.; Han, Q.; Wu, W. Tuning the Luminous Properties and Optical Thermometry of Cs2SnCl6 Phosphor Microcrystals via Bi and Sb Codoping. Photon. Res. 2021, 9, 2182. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Li, Y.; Gao, Y.; Yu, H.; Cao, Y.; Zhang, X.; Chen, B.; Xu, S. Regulating A-Site Alloying of Te4+-Doped Hafnium-Halide Perovskite for Fluorescence Thermometry Achieving Breakthrough Sensitivity at High Temperatures. Laser Photonics Rev. 2025, 19, 2401620. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S.; Rogach, A.L.; Xing, G.; Shi, P.; Wang, F. Multiexcitonic Emission in Zero-Dimensional Cs2ZrCl6:Sb3+ Perovskite Crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Chen, J.; Zheng, D.; Tang, Z.; Deng, W.; Han, K. Colloidal Synthesis and Tunable Multicolor Emission of Vacancy-Ordered Cs2HfCl6 Perovskite Nanocrystals. Laser Photonics Rev. 2022, 16, 2100439. [Google Scholar] [CrossRef]
- Liu, R.; Yang, J.; Zhao, D.; Liu, W.; Li, G.; Yan, W.; Zhang, W. Efficient Broadband Yellow-Green Emission of Vacancy Halide Double Perovskites Through the Ion-Exchanged Strategy. Inorg. Chem. 2021, 60, 17878–17888. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, Y.; Li, M.; Xia, Z. Photoluminescence of Singlet/Triplet Self-Trapped Excitons in Sb3+-Based Metal Halides. Adv. Opt. Mater. 2021, 9, 2002213. [Google Scholar] [CrossRef]
- Oomen, E.W.J.L.; Smit, W.M.A.; Blasse, G. Jahn-Teller Effect in the Emission and Excitation Spectra of the Sb3+ Ion in LPO4 (L = Sc, Lu, Y). Phys. Rev. B 1988, 37, 18–26. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Liu, J.; Tang, J. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007. [Google Scholar] [CrossRef]
- Oomen, E.W.J.L.; Smit, W.M.A.; Blasse, G. On the Luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc, Y, La): A Model System for the Study of Trivalent s2 Ions. J. Phys. C Solid State Phys. 1986, 19, 3263–3272. [Google Scholar] [CrossRef]
- Chang, J.; Xu, S.; Gao, Y.; Li, Y.; Wang, Y.; Yu, H.; Cao, Y.; Zhang, X.; Chen, B. Excitation Wavelength Regulated Dynamic Luminescence in Bi/Sb co-Doped Tin Halide for Encrypted Information Transmission and High-Sensitivity Wavelength Sensor. Adv. Mater. Technol. 2025, 10, 2401672. [Google Scholar] [CrossRef]
- Zhou, R.; Cheng, C.-A.; Wang, X.; Nie, K.; Wu, J.; Wu, M.; Duan, X.; Hu, Z.; Huq, I.U.; Wang, H.; et al. Metal Halide Perovskite Nanocrystals with Enhanced Photoluminescence and Stability toward Anti-Counterfeiting High-Performance Flexible Fibers. Nano Res. 2023, 16, 3542–3551. [Google Scholar] [CrossRef]
- Zhang, R.; Mao, X.; Yang, Y.; Yang, S.; Zhao, W.; Wumaier, T.; Wei, D.; Deng, W.; Han, K. Air-Stable, Lead-Free Zero-Dimensional Mixed Bismuth-Antimony Perovskite Single Crystals with Ultra-broadband Emission. Angew. Chem. Int. Edit. 2019, 58, 2725–2729. [Google Scholar] [CrossRef]
- Gray, M.B.; Hariyani, S.; Strom, T.A.; Majher, J.D.; Brgoch, J.; Woodward, P.M. High-Efficiency Blue Photoluminescence in the Cs2NaInCl6:Sb3+ Double Perovskite Phosphor. J. Mater. Chem. C 2020, 8, 6797–6803. [Google Scholar] [CrossRef]
- Benin, B.M.; Dirin, D.N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M.V. Highly Emissive Self-Trapped Excitons in Fully Inorganic Zero-Dimensional Tin Halides. Angew. Chem. Int. Edit. 2018, 57, 11329–11333. [Google Scholar] [CrossRef]
- Xu, B.; Li, Y.; Hong, P.; Zhang, P.; Han, J.; Xiao, Z.; Quan, Z. Pressure-Controlled Free Exciton and Self-Trapped Exciton Emission in Quasi-One-Dimensional Hybrid Lead Bromides. Nat. Commun. 2024, 15, 7403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, Z.-F.; Ma, Z.-Z.; Li, Y.; Li, S.; Wu, D.; Xu, T.-T.; Li, X.-J.; Shan, C.-X.; Du, G.-T. Silica Coating Enhances the Stability of Inorganic Perovskite Nanocrystals for Efficient and Stable Down-Conversion in White Light-Emitting Devices. Nanoscale 2018, 10, 20131–20139. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, X.; Li, B.; Yang, L.; Li, Q.; Jiang, H.; Xu, D. Tunable Dual-Emission in Monodispersed Sb3+/Mn2+ Codoped Cs2NaInCl6 Perovskite Nanocrystals through an Energy Transfer Process. Small 2020, 16, 2002547. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, Z.; Hu, M.; Chen, C.; Luo, J.; Li, S.; Gao, L.; Xiao, Z.; Niu, G.; Tang, J. Antimony Doped Cs2SnCl6 with Bright and Stable Emission. Front. Optoelectron. 2019, 12, 352–364. [Google Scholar] [CrossRef]
- Dai, G.; Ma, Z.; Qiu, Y.; Ma, Z. Codoped 2D All-Inorganic Halide Perovskite Cs3Cd2Cl7:Sb3+:Mn2+ with Ultralong Afterglow. Inorg. Chem. 2023, 62, 7906–7913. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, P.; Cheng, Z.; Ouyang, Q.; Lian, H.; Lin, J. Metal Halides RbCdCl3:Sb3+ and Rb4CdCl6:Sb3+ with Yellow and Cyan Emissions Obtained via a Facile Hydrothermal Process. J. Mater. Chem. C 2023, 11, 16390–16397. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, G.; Lu, X.; Wang, Y.; Zhang, N.; Zhang, Q.; Liu, X.; Tang, X. Unveiling Sb3+ Doping and Tricolor Luminescence from Intrinsic Self-Trapped Excitons in Cs2ZnCl4 Crystals. J. Phys. Chem. Lett. 2024, 15, 2616–2623. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, Y. Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes. Materials 2025, 18, 1896. https://doi.org/10.3390/ma18091896
Li Y, Gao Y. Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes. Materials. 2025; 18(9):1896. https://doi.org/10.3390/ma18091896
Chicago/Turabian StyleLi, Yanbiao, and Yuefeng Gao. 2025. "Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes" Materials 18, no. 9: 1896. https://doi.org/10.3390/ma18091896
APA StyleLi, Y., & Gao, Y. (2025). Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes. Materials, 18(9), 1896. https://doi.org/10.3390/ma18091896