Fragmentation of Cu2O Oxides Caused by Various States of Stress Resulting from Extreme Plastic Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, Q.; Liu, Y.; Zhao, Y. A review on copper alloys with high strength and high electrical conductivity. J. Alloys. Compd. 2024, 990, 174456. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Strzępek, P. The Assessment of Abrasion Resistance of Casted Non-Ferrous Metals and Alloys with the Use of 3D Scanning. Processes 2024, 12, 2200. [Google Scholar] [CrossRef]
- Chandra, K.; Mahanti, A.; Singh, A.P.; Joshi, N.S.; Kain, V. Metallurgical Investigation on Embrittlement of Copper Cable of an Electric Motor. J. Fail. Anal. Preven 2019, 19, 598–603. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, E.; Lostado-Lorza, R.; Berlanga-Labari, C. A Comprehensive Review of Fatigue Strength in Pure Copper Metals (DHP, OF, ETP). Metals 2024, 14, 464. [Google Scholar] [CrossRef]
- Liu, P.; Tong, L.; Wang, J.; Shi, L.; Tang, H. Challenges and developments of copper wire bonding technology. Microelectron. Reliab. 2012, 52, 1092–1098. [Google Scholar] [CrossRef]
- Kinas, I.; Tan, E.; Can, H. The Effect of Oxygen Content on Mechanical and Conductivity Properties of Copper Rods Produced by Contirod and Up-Cast Continuous Casting Methods. Int. J. Sci. Technol. Res. 2018, 4, 384–391. [Google Scholar]
- Jakani, S.; Mathon, M.H.; Gerber, P.; Benyoucef, M.; Novion, C.H.; Baudin, T. Influence of Oxygen Content on the Static Recrystallization of ETP Copper. Mater. Sci. Forum. 2004, 467–470, 471–476. [Google Scholar] [CrossRef]
- Norasethasopon, S. Chevron Crack Initiation in Multi-Pass Drawing of Inclusion Copper Shaped-Wire. J. Met. Mater. Miner. 2011, 21, 1–8. [Google Scholar]
- Gavrish, P.A.; Perig, A.V.; Gribkov, E.P.; Berezshnaya, O.V. Reducing the risk of formation of the eutectic Cu-Cu2O during welding of copper with steel by improving treatment preparation technology. Adv. Mater. Process. Technol. 2021, 7, 400–416. [Google Scholar] [CrossRef]
- Goto, I.; Aso, S.; Ohguchi, K.; Kurosawa, K.; Suzuki, H.; Hayashi, H.; Shionoya, J. Effect of Solidification Conditions on the Deformation Behavior of Pure Copper Castings. Mater. Trans. 2019, 60, 2–9. [Google Scholar] [CrossRef]
- Helbert, A.L.; Moya, A.; Jil, T.; Andrieux, M.; Ignat, M.; Brisset, F.; Baudin, T. Copper Refinement from Anode to Cathode and Then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility. Microsc. Microanal. 2015, 21, 1153–1166. [Google Scholar] [CrossRef]
- Mysik, R.K.; Brusnitsyn, S.V.; Sulitsin, A.V.; Sokolov, I.A. Investigation of Microstructure of Oxygen-Containing Copper. KnE Eng. 2019, 1, 128–134. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, W.; Wu, M.; Li, R.; Dong, X. Influence of Low Oxygen Content on the Recrystallization Behavior of Rolled Copper Foil. Oxid. Met. 2018, 90, 203–215. [Google Scholar] [CrossRef]
- Pantazopoulos, G.; Vazdirvanidis, A.; Contopoulos, I. Cracking of Electrolytic Tough Pitch Copper Plates During Hot Rolling. J. Fail. Anal. Preven. 2019, 19, 858–865. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy: Halides, Hydroxides, Oxides; Mineral Data Pub.: Tucson, AZ, USA, 1997; Volume 3. [Google Scholar]
- Goto, I.; Aso, S.; Ohguchi, K.; Kurosawa, K.; Suzuki, H.; Hayashi, H.; Shionoya, J. Deformation Behavior of Pure Copper Castings with As-Cast Surfaces for Electrical Parts. J. Mater. Eng. Perform. 2019, 28, 3835–3843. [Google Scholar] [CrossRef]
- Komori, K. Ductile Fracture in Metal Forming: Modeling and Simulation. Acad. Press. 2020, 1, 49–94. [Google Scholar] [CrossRef]
- Elices, M.; Llorca, J. Models of fibre fracture. In Fiber Fracture; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2002; pp. 27–56. [Google Scholar] [CrossRef]
- Son, S.B.; Lee, Y.K.; Kang, S.H.; Chung, H.S.; Cho, J.S.; Moon, J.T.; Oh, K.H. A numerical approach on the inclusion effects in ultrafine gold wire drawing process. Eng. Fail. Anal. 2011, 18, 1272–1278. [Google Scholar] [CrossRef]
- Cho, H.; Jo, H.H.; Lee, S.G.; Kim, B.M.; Kim, Y.J. Effect of reduction ratio, inclusion size and distance between inclusions on wire breaks in Cu fine wiredrawing. J. Mater. Process. Technol. 2002, 130–131, 416–420. [Google Scholar] [CrossRef]
- Norasethasopon, S.; Yoshida, K. Influences of inclusion shape and size in drawing of copper shaped-wire. J. Mater. Process. Technol. 2006, 172, 400–406. [Google Scholar] [CrossRef]
- Yilmaz, M. Failures during the production and usage of steel wires. J. Mater. Process. Technol. 2006, 171, 232–239. [Google Scholar] [CrossRef]
- Sachana, S.; Morishita, K.; Miyahara, H. Oxide and Heat Treatment Microstructure Evolution of Melted Mark on Copper Wire under Various Heat Treatment Conditions. Mater. Trans. 2023, 64, 2302–2308. [Google Scholar] [CrossRef]
- Das, A.; Sivaprasada, S.; Tarafder, M.; Das, S.K.; Tarafder, S. Estimation of damage in high strength steels. Appl. Soft Comput. 2013, 13, 1033–1042. [Google Scholar] [CrossRef]
- Zasadzińska, M.; Knych, T. The morphology of eutectic copper oxides I (Cu2O) in the processing of wire rod and wires made from ETP grade copper. Arch. Metall. Mater. 2019, 64, 1611–1616. [Google Scholar] [CrossRef]
- Loginov, Y.N.; Demakov, S.L.; Ivanova, M.A.; Illarionov, A.G.; Karabanalov, M.S.; Stepatov, S.I. Effect of Annealing on Properties of Hot Rolled Electrical Copper. Phys. Met. Metallogr. 2015, 116, 393–400. [Google Scholar] [CrossRef]
- Loginov, Y.N.; Demakov, S.L.; Illarionov, A.G.; Ivanova, M.A. Interaction of a Copper Oxide Particle with Copper in Drawing. Russ. Metall. (Met.) 2012, 11, 947–953. [Google Scholar] [CrossRef]
- Strzępek, P.; Mamala, A.; Zasadzińska, M.; Kiesiewicz, G.; Knych, T.A. Shape Analysis of the Elastic Deformation Region throughout the Axi-Symmetric Wire Drawing Process of ETP Grade Copper. Materials 2021, 14, 4713. [Google Scholar] [CrossRef]
- Scardaci, V. Copper Nanowires for Transparent Electrodes: Properties, Challenges and Applications. Appl. Sci. 2021, 11, 8035. [Google Scholar] [CrossRef]
- Li, X.S.; Wang, Y.M.; Yin, C.R.; Yin, Z.X. Copper nanowires in recent electronic applications: Progress and perspectives. J. Mater. Chem. C. 2020, 8, 849–872. [Google Scholar] [CrossRef]
- Zhao, S.; Han, F.; Li, J.; Meng, X.; Huang, W.; Cao, D.; Zhang, G.; Sun, R.; Wong, C.-P. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. Small 2018, 14, 1800047. [Google Scholar] [CrossRef]
- Avitzur, B. Metal Forming. Processes and Analysis; McGraw-Hill Book Company: New York, NY, USA, 1968. [Google Scholar]
- Banganayi, C.; Nyembwe, K.; Mageza, K. Annealer curve characteristics of electrolytically refined tough pitch copper (Cu-ETP) and oxygen free up-cast copper (Cu-OF) for electrical cable wires. Results Mater. 2020, 8, 100146. [Google Scholar] [CrossRef]
- Mishra, A.; Kad, B.K.; Gregori, F.; Meyers, M.A. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta. Mater. 2007, 55, 13–28. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Shih, M.H.; Yu, C.Y.; Kao, P.W.; Chang, C.P. Microstructure and flow stress of copper deformed to large plastic strains. Scr. Mater. 2001, 45, 793–799. [Google Scholar] [CrossRef]
- Zasadzińska, M.; Smyrak, B.; Knych, T.; Strzępek, P. Defects analysis of copper wires manufactured in industrial conditions. Metalurgija 2022, 61, 774–776. [Google Scholar]
- Hallstedt, B.; Risold, D.; Gauckle, L.J. Thermodynamic assessment of the copper-oxygen system. J. Phase Equilibria 1994, 15, 483–499. [Google Scholar] [CrossRef]
- Schramm, L.; Behr, G.; Löser, W.; Wetzig, K. Thermodynamic reassessment of the Cu-O phase diagram. J. Phase Equilibria Diffus. 2005, 26, 605–612. [Google Scholar] [CrossRef]
- Aurubis Official Website. Available online: https://www.aurubis.com/en/products/copper-products/rod-and-specialty-wire/wire-rod/Productionprocess (accessed on 14 March 2025).
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. ASM Handbook, Vol. III: Alloy Phase Diagrams; ASM International: Geauga, OH, USA, 1992. [Google Scholar]
- Schmid, R. A thermodynamic Analysis of the Cu-O System with an Associated Solution Model. Metall. Trans. B 1983, 14, 473–481. [Google Scholar] [CrossRef]
- Zasadzińska, M.; Knych, T.; Smyrak, B.; Strzępek, P. Investigation of the Dendritic Structure Influence on the Electrical and Mechanical Properties Diversification of the Continuously Casted Copper Strand. Materials 2020, 13, 5513. [Google Scholar] [CrossRef]
- Blicharski, M. Odkształcanie I Pękanie; UWND AGH: Kraków, Poland, 2002. (In Polish) [Google Scholar]
- Norasethasopon, S.; Yoshida, K. Prediction of chevron crack initiation in inclusion copper shaped-wire drawing. Eng. Fail. Anal. 2008, 15, 378–393. [Google Scholar] [CrossRef]
- Martin, E.; Leguillon, D.; Sevecek, O.; Bermejo, R. Understanding the tensile strength of ceramics in the presence of small critical flaws. Eng. Fract. Mech. 2018, 201, 167–175. [Google Scholar] [CrossRef]
- Leguillon, D.; Martin, E.; Sevecek, O.; Bermejo, R. What is the tensile strength of a ceramic to be used in numerical models for predicting crack initiation? Int. J. Fract. 2018, 212, 89–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zasadzińska, M. Fragmentation of Cu2O Oxides Caused by Various States of Stress Resulting from Extreme Plastic Deformation. Materials 2025, 18, 1736. https://doi.org/10.3390/ma18081736
Zasadzińska M. Fragmentation of Cu2O Oxides Caused by Various States of Stress Resulting from Extreme Plastic Deformation. Materials. 2025; 18(8):1736. https://doi.org/10.3390/ma18081736
Chicago/Turabian StyleZasadzińska, Małgorzata. 2025. "Fragmentation of Cu2O Oxides Caused by Various States of Stress Resulting from Extreme Plastic Deformation" Materials 18, no. 8: 1736. https://doi.org/10.3390/ma18081736
APA StyleZasadzińska, M. (2025). Fragmentation of Cu2O Oxides Caused by Various States of Stress Resulting from Extreme Plastic Deformation. Materials, 18(8), 1736. https://doi.org/10.3390/ma18081736