The Wear Resistance of NiCrSiB-20%CaF2 Sinters in the Temperature Range 23–600 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sinter Preparation
2.2. Microstructure and Hardness
2.3. Wear Tests
2.4. Worn Surface Studies
3. Results
3.1. Microstructure and Hardness of the Sinters
3.2. Wear Resistance
Temperature | Point | Ni | Cr | Si | Ca | F | O |
---|---|---|---|---|---|---|---|
23 °C | 1 | 95.6 | 1.5 | 1.4 | - | - | 1.4 |
2 | 90.4 | 7.4 | 0.6 | - | - | 1.6 | |
3 | 85.8 | 8.0 | 1.2 | - | - | 5.1 | |
4 | 96.7 | 1.0 | 1.4 | - | - | 0.9 | |
200 °C | 5 | 84.2 | 2.2 | 1.3 | - | - | 12.3 |
6 | 94.3 | 1.0 | 1.5 | - | - | 3.2 | |
7 | 87.4 | 3.1 | 1.0 | - | - | 8.6 | |
8 | 84.7 | 2.2 | 1.3 | - | - | 11.8 | |
400 °C | 9 | 73.8 | 5.1 | 1.1 | - | - | 20.0 |
10 | 82.0 | 2.8 | 1.1 | - | - | 14.1 | |
11 | 96.7 | 0.3 | 1.6 | - | - | 1.4 | |
12 | 80.5 | 1.8 | 1.3 | - | - | 16.3 | |
600 °C | 13 | 80.0 | 2.9 | 0.8 | - | - | 16.2 |
14 | 95.6 | 0.2 | 1.4 | - | - | 2.7 | |
15 | 82.9 | 1.5 | 0.9 | - | - | 14.8 | |
16 | 93.0 | 0.3 | 1.4 | - | - | 5.3 |
Temperature | Point | Ni | Cr | Si | Ca | F | O |
---|---|---|---|---|---|---|---|
23 °C | 1 | 0.5 | 0.0 | 0.0 | 46.9 | 52.0 | 0.5 |
2 | 70.2 | 0.2 | 1.4 | 10.7 | 8.9 | 8.6 | |
3 | 94.5 | 0.1 | 2.1 | 0.9 | 1.3 | 1.1 | |
4 | 81.6 | 0.1 | 1.7 | 5.8 | 5.8 | 5.1 | |
200 °C | 5 | 1.1 | 0.0 | 0.0 | 44.0 | 54.2 | 0.6 |
6 | 71.5 | 0.2 | 1.2 | 11.5 | 11.1 | 4.5 | |
7 | 90.5 | 0.2 | 1.7 | 3.1 | 3.6 | 1.0 | |
8 | 77.1 | 0.2 | 1.4 | 7.9 | 8.7 | 4.7 | |
400 °C | 9 | 0.4 | 0.0 | 0.0 | 43.8 | 55.2 | 0.6 |
10 | 63.2 | 0.1 | 1.5 | 14.0 | 16.7 | 4.5 | |
11 | 89.4 | 0.2 | 1.8 | 3.3 | 3.4 | 1.9 | |
12 | 73.5 | 0.2 | 1.5 | 9.8 | 10.1 | 5.0 | |
600 °C | 13 | 6.7 | 0.1 | 0.1 | 45.0 | 46.0 | 2.3 |
14 | 70.9 | 4.0 | 0.9 | 3.1 | 3.7 | 17.5 | |
15 | 72.6 | 4.5 | 1.0 | 2.6 | 2.9 | 16.4 | |
16 | 80.1 | 1.0 | 1.4 | 3.5 | 4.3 | 9.7 |
4. Conclusions
- The sinter with the calcium fluoride is characterized by a lower porosity compared to the sinter without this additive and is approximately 2% and 11%, respectively.
- The sinters with evenly distributed calcium fluoride in the metal matrix were obtained.
- The sinter containing 20 wt. % CaF2 is characterized by a lower hardness of 79.78 HV2 compared to the sinter without the addition of calcium fluoride (91.48 HV2).
- The coefficients of friction were lower at each test temperature for the friction pairs mating with the sinters containing calcium fluoride additives and decreased with the increasing test temperature. The lowest coefficient of friction (0.37) was observed for the Inconel®625–NiCrSiB + 20% CaF2 friction pair at the test temperature of 600 °C.
- The main wear mechanisms of the Inconel®625–NiCrSiB friction pairs were micro-cutting, micro-ploughing and oxidation wear, with the wear intensification being lower at higher temperatures.
- The main wear mechanisms of the Inconel®625–NiCrSiB + 20%CaF2 friction pairs were micro-cutting, micro-ploughing, and oxidation wear. However, due to the presence of calcium fluoride, the intensification of these mechanisms was lower due to the tribofilm formation during the test, particularly at a temperature of 600 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Kumar, M.; Tailor, S. Self-Lubricating Composite Coatings: A Review of Deposition Techniques and Material Advancement. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Yang, J.-F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fang, Q.-F. Influence of Service Temperature on Tribological Characteristics of Self-Lubricant Coatings: A Review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Tulinski, M.; Čep, R. Tribological Properties of Cu-MoS2-WS2-Ag-CNT Sintered Composite Materials. Materials 2022, 15, 8424. [Google Scholar] [CrossRef] [PubMed]
- Çelik, A.; Özer, H.Ö.; Tüzemen, Ş.M.; Yıldız, M.; Kovacı, H. Synthesis, Characterization and Tribological Properties of Solid Lubricant Graphite Films Produced by PECVD. Mater. Today Commun. 2023, 36, 106506. [Google Scholar] [CrossRef]
- Somberg, J.; Gonçalves, G.; Emami, N. Graphene Oxide versus Graphite and Chemically Expanded Graphite as Solid Lubricant in Ultrahigh Molecular Weight Polyethylene Composites. Tribol. Int. 2023, 187, 108643. [Google Scholar] [CrossRef]
- Belyak, O.A.; Kolesnikov, I.V.; Suvorova, T.V. Modeling of Tribological Properties of Self-Lubricating Composite Materials. In Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2023; pp. 479–488. [Google Scholar] [CrossRef]
- Essa, F.A.; Zhang, Q.; Huang, X.; Ibrahim, A.M.M.; Ali, M.K.A.; Abdelkareem, M.A.A.; Elagouz, A. Improved Friction and Wear of M50 Steel Composites Incorporated with ZnO as a Solid Lubricant with Different Concentrations under Different Loads. J. Mater. Eng. Perform. 2017, 26, 4855–4866. [Google Scholar] [CrossRef]
- Kotkowiak, M.; Piasecki, A. Characterization of Wear Properties of Pure Nickel Modified by Ni-Cr Composite and CaF2 Solid Lubricant Addition. Materials 2022, 15, 7511. [Google Scholar] [CrossRef] [PubMed]
- Kotkowiak, M.; Piasecki, A.; Kotkowiak, M.; Buchwald, T. The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights. Materials 2022, 15, 5501. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Kulka, M. The Effect of CaF2 and BaF2 Solid Lubricants on Wear Resistance of Laser borided 100CrMnSi6-4 Bearing Steel. Arch. Mater. Sci. Eng. 2017, 1, 15–23. [Google Scholar] [CrossRef]
- Roszak, M.R.; Kurzawa, A.; Roik, T.; Gavrysh, O.; Vitsiuk, I.; Barsan, N.; Pyka, D.; Bocian, M.; Jamroziak, K. Friction Films Analysis and Tribological Properties of Composite Antifriction Self-Lubricating Material Based on Nickel Alloy. Mater. Sci. Pol. 2023, 41, 1–17. [Google Scholar] [CrossRef]
- Essa, F.A.; Zhang, Q.; Huang, X.; Kamal, M.; Elagouz, A.; Abdelkareem, M.A. Effects of ZnO and MoS2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study. Tribol. Lett. 2017, 65, 97. [Google Scholar] [CrossRef]
- Essa, F.A.; Zhang, Q.; Huang, X. Investigation of the Effects of Mixtures of WS2 and ZnO Solid Lubricants on the Sliding Friction and Wear of M50 Steel against Silicon Nitride at Elevated Temperatures. Wear 2017, 374, 128–141. [Google Scholar] [CrossRef]
- Muthuraja, A.; Senthilvelan, S. Development of Tungsten Carbide Based Self Lubricant Cutting Tool Material: Preliminary Investigation. Int. J. Refract. Met. Hard Mater. 2015, 48, 89–96. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Song, P.; Cheng, J.; Gu, J.; Ma, T. Dry Sliding Wear Behavior of Al2O3-TiC Ceramic Composites Added with Solid Lubricant CaF2 by Cold Pressing and Sintering. Tribol. Trans. 2014, 58, 231–239. [Google Scholar] [CrossRef]
- Ding, C.-H.; Liu, C.-H.; Yang, Z.-M.; Wang, Y.-P.; Sun, Z.-B.; Yu, L. Effect of Size Refinement and Distribution of Lubricants on Friction Coefficient of High Temperature Self-Lubricating Composites. Compos. Sci. Technol. 2010, 70, 1000–1005. [Google Scholar] [CrossRef]
- Konopka, K.; Roik, T.A.; Gavrish, A.P.; Vitsuk, Y.Y.; Mazan, T. Effect of CaF2 Surface Layers on the Friction Behavior of Copper-Based Composite. Powder Metall. Met. Ceram. 2012, 51, 363–367. [Google Scholar] [CrossRef]
- Kotkowiak, M.; Piasecki, A.; Kulka, M. The Influence of Solid Lubricant on Tribological Properties of Sintered Ni–20% CaF2 Composite Material. Ceram. Int. 2019, 45, 17103–17113. [Google Scholar] [CrossRef]
- Deng, J.; Li, L.; Yang, X.; Liu, J.; Sun, J.; Zhao, J. Self-Lubrication of Al2O3/TiC/CaF2 Ceramic Composites in Sliding Wear Tests and in Machining Processes. Mater. Eng. 2007, 28, 757–764. [Google Scholar] [CrossRef]
- Deng, J.; Cao, T.; Yang, X.; Liu, J. Self-Lubrication of Sintered Ceramic Tools with CaF2 Additions in Dry Cutting. Int. J. Mach. Tools Manuf. 2006, 46, 957–963. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Wu, G.; Xiao, G.; Fang, B. Al2O3/(W,Ti)C/CaF2 Multi-Component Graded Self-Lubricating Ceramic Cutting Tool Material. Int. J. Refract. Met. Hard Mater. 2014, 45, 125–129. [Google Scholar] [CrossRef]
- Deng, J.; Cao, T. Self-Lubricating Mechanisms via the in Situ Formed Tribofilm of Sintered Ceramics with CaF2 Additions When Sliding against Hardened Steel. Int. J. Refract. Met. Hard Mater. 2007, 25, 189–197. [Google Scholar] [CrossRef]
- Kong, L.; Zhu, S.; Bi, Q.; Qiao, Z.; Yang, J.; Liu, W. Friction and Wear Behavior of Self-Lubricating ZrO2(Y2O3)–CaF2–Mo–Graphite Composite from 20 °C to 1000 °C. Ceram. Int. 2014, 40, 10787–10792. [Google Scholar] [CrossRef]
- Cui, G.; Lu, L.; Wu, J.; Liu, Y.; Gao, G. Microstructure and Tribological Properties of Fe–Cr Matrix Self-Lubricating Composites against Si3N4 at High Temperature. J. Alloys Compd. 2014, 611, 235–242. [Google Scholar] [CrossRef]
- Song, P.; Yang, X.; Wang, S.; Yang, L. Tribological Properties of Self-Lubricating Laminated Ceramic Materials. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 906–911. [Google Scholar] [CrossRef]
- Kim, S.-H.; Wohn Lee, S. Wear and Friction Behavior of Self-Lubricating Alumina–Zirconia–Fluoride Composites Fabricated by the PECS Technique. Ceram. Int. 2014, 40, 779–790. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Sasaki, S.; Murakami, T.; Umeda, K. The Synergistic Effects of CaF2 and Au Lubricants on Tribological Properties of Spark-Plasma-Sintered ZrO2(Y2O3) Matrix Composites. Mater. Sci. Eng. A 2004, 386, 234–243. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Li, Y.F.; Wang, Y.M.; Zhou, Y.; Murakami, T.; Sasaki, S. Microstructure and Tribological Properties of ZrO2(Y2O3) Matrix Composites Doped with Different Solid Lubricants from Room Temperature to 800 °C. Wear 2009, 267, 1353–1360. [Google Scholar] [CrossRef]
- Shi, X.; Yao, J.; Xu, Z.; Zhai, W.; Song, S.; Wang, M.; Zhang, Q. Tribological Performance of TiAl Matrix Self-Lubricating Composites Containing Ag, Ti3SiC2 and BaF2/CaF2 Tested from Room Temperature to 600 °C. Mater. Des. 2014, 53, 620–633. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Yu, J.; Sathyamurthy, R.; Tawfik, M.M.; Shanmugan, S.; Essa, F.A. Improving the Tribological Properties of AISI M50 Steel Using SnS/ZnO Solid Lubricants. J. Alloys Compd. 2020, 821, 153494. [Google Scholar] [CrossRef]
- Zuomin, L.; Childs, T.H.C. The Study of Wear Characteristics of Sintered High Speed Steels Containing CaF2, MnS and TiC Additives at Elevated Temperature. Wear 2004, 257, 435–440. [Google Scholar] [CrossRef]
- Rajkumar, K.; Aravindan, S. Tribological Performance of Microwave Sintered Copper–TiC–Graphite Hybrid Composites. Tribol. Int. 2011, 44, 347–358. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Q.; Niu, M.; Yang, J.; Liu, W. The Tribological Properties of Bronze–SiC–Graphite Composites under Sea Water Condition. Tribol. Int. 2013, 60, 25–35. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Q.; Zhu, S.; Yang, J.; Liu, W. Tribological Properties of Bronze–Graphite Composites under Sea Water Condition. Tribol. Int. 2012, 53, 76–86. [Google Scholar] [CrossRef]
- Rajkumar, K.; Aravindan, S. Microwave Sintering of Copper–Graphite Composites. J. Mater. Process. Technol. 2009, 209, 5601–5605. [Google Scholar] [CrossRef]
- Cui, G.; Niu, M.; Zhu, S.; Yang, J.; Bi, Q. Dry-Sliding Tribological Properties of Bronze–Graphite Composites. Tribol. Lett. 2012, 48, 111–122. [Google Scholar] [CrossRef]
- Muterlle, P.V.; Cristofolini, I.; Pilla, M.; Pahl, W.; Molinari, A. Surface Durability and Design Criteria for Graphite–Bronze Sintered Composites in Dry Sliding Applications. Mater. Des. 2011, 32, 3756–3764. [Google Scholar] [CrossRef]
- Ren, B.; Gao, L.; Li, M.; Zhang, S.; Ran, X. Tribological Properties and Anti-Wear Mechanism of ZnO@Graphene Core-Shell Nanoparticles as Lubricant Additives. Tribol. Int. 2020, 144, 106114. [Google Scholar] [CrossRef]
- Kestursatya, M.; Kim, J.K.; Rohatgi, P.K. Wear Performance of Copper–Graphite Composite and a Leaded Copper Alloy. Mater. Sci. Eng. A 2003, 339, 150–158. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Q.; Yang, J.; Liu, W. Fabrication and Study on Tribological Characteristics of Bronze–Alumina–Silver Composite under Sea Water Condition. Mater. Des. 2013, 46, 473–484. [Google Scholar] [CrossRef]
- Cui, G.; Li, J.; Wu, G. Friction and Wear Behavior of Bronze Matrix Composites for Seal in Antiwear Hydraulic Oil. Tribol. Trans. 2014, 58, 51–58. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Y.; Gao, G.; Liu, H.; Kou, Z. Microstructure and High-Temperature Wear Performance of FeCr Matrix Self-Lubricating Composites from Room Temperature to 800 °C. Materials 2020, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Takama, M.; Iwai, Y.; Washida, K.; Sasaki, Y. Wear and Mechanical Properties of Sintered Copper–Tin Composites Containing Graphite or Molybdenum Disulfide. Wear 2003, 255, 573–578. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, A.; Huang, Z. Microstructure and Properties of HVOF Sprayed Ni-Based Submicron WS2/CaF2 Self-Lubricating Composite Coating. Trans. Nonferrous Met. Soc. China 2009, 19, 85–92. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Huang, Z. Characterization of Ni-based alloy submicron WS2/CaF2 composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Adv. Mater. Res. 2014, 881–883, 1407–1411. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Zhu, Y.; Ji, H.; Zheng, X.; Ruan, Q.; Niu, Y.; Liu, Z.; Zeng, Y. Microstructures and Tribological Properties of Plasma Sprayed WC–Co–Cu–BaF2/CaF2 Self-Lubricating Wear Resistant Coatings. Appl. Surf. Sci. 2010, 256, 4938–4944. [Google Scholar] [CrossRef]
- Huang, C.; Du, L.; Zhang, W. Friction and Wear Characteristics of Plasma-Sprayed Self-Lubrication Coating with Clad Powder at Elevated Temperatures up to 800 °C. J. Therm. Spray Technol. 2013, 23, 463–469. [Google Scholar] [CrossRef]
- Cai, B.; Tan, Y.; He, L.; Tan, H.; Wang, X. Tribological Behavior and Mechanisms of Graphite/CaF2/TiC/Ni-Base Alloy Composite Coatings. Trans. Nonferrous Met. Soc. China 2013, 23, 392–399. [Google Scholar] [CrossRef]
- Yao, Q.; Jia, J.; Chen, T.; Xin, H.; Shi, Y.; He, N.; Feng, X.; Shi, P.; Lu, C. High Temperature Tribological Behaviors and Wear Mechanisms of NiAl-MoO3/CuO Composite Coatings. Surf. Coat. Technol. 2020, 395, 125910. [Google Scholar] [CrossRef]
- Kobayashi, T.; Maruyama, T.; Yasuda, T. Sliding Properties of Composite Sprayed Coating between Bronze Powder and Solid Lubricant. Mater. Trans. 2003, 44, 1024–1028. [Google Scholar] [CrossRef]
- Ling, H.J.; Mai, Y.J.; Li, S.L.; Zhang, L.Y.; Liu, C.S.; Jie, X.H. Microstructure and Improved Tribological Performance of Graphite/Copper Zinc Composite Coatings Fabricated by Low Pressure Cold Spraying. Surf. Coat. Technol. 2019, 364, 256–264. [Google Scholar] [CrossRef]
- Xiang, Z.-F.; Liu, X.-B.; Ren, J.; Luo, J.; Shi, S.-H.; Chen, Y.; Shi, G.-L.; Wu, S.-H. Investigation of Laser Cladding High Temperature Anti-Wear Composite Coatings on Ti6Al4V Alloy with the Addition of Self-Lubricant CaF2. Appl. Surf. Sci. 2014, 313, 243–250. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhang, P.; Yu, Z.; Li, C.; Xu, P.; Lu, Y. Laser Cladding of Co-Based Alloy/TiC/CaF2 Self-Lubricating Composite Coatings on Copper for Continuous Casting Mold. Surf. Coat. Technol. 2013, 232, 362–369. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, P.; Yu, Z.; Lu, Q.; Yang, S.; Li, C. Microstructure and Tribological Properties of Laser-Clad Ni–Cr/TiB2 Composite Coatings on Copper with the Addition of CaF2. Surf. Coat. Technol. 2012, 206, 4046–4053. [Google Scholar] [CrossRef]
- Liu, W.-G.; Liu, X.-B.; Zhang, Z.-G.; Guo, J. Development and Characterization of Composite Ni–Cr–C–CaF2 Laser Cladding on γ-TiAl Intermetallic Alloy. J. Alloys Compd. 2009, 470, L25–L28. [Google Scholar] [CrossRef]
- Wang, H.M.; Yu, Y.L.; Li, S.Q. Microstructure and Tribological Properties of Laser Clad CaF2/Al2O3 Self-Lubrication Wear-Resistant Ceramic Matrix Composite Coatings. Scr. Mater. 2002, 47, 57–61. [Google Scholar] [CrossRef]
- Piasecki, A.; Kulka, M.; Kotkowiak, M. Wear Resistance Improvement of 100CrMnSi6-4 Bearing Steel by Laser Boriding Using CaF2 Self-Lubricating Addition. Tribol. Int. 2016, 97, 173–191. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Kulka, M. Self-Lubricating Surface Layers Produced Using Laser Alloying of Bearing Steel. Wear 2017, 376, 993–1008. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Makuch, N.; Kulka, M. Wear Behavior of Self-Lubricating Boride Layers Produced on Inconel 600-Alloy by Laser Alloying. Wear 2019, 426, 919–933. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Tulinski, M.; Kubiak, A. Tribological Behavior and Wear Mechanism of Ni-Nano TiO2 Composite Sintered Material at Room Temperature and 600 °C. Lubricants 2022, 10, 120. [Google Scholar] [CrossRef]
- Kong, X.; Sun, W.; Wang, Q.; Chen, M.; Zhang, T.; Wang, F. Improving High-Temperature Wear Resistance of NiCr Matrix Self-Lubricating Composites by Controlling Oxidation and Surface Texturing. J. Mater. Sci. Technol. 2022, 131, 253–263. [Google Scholar] [CrossRef]
- Houdková, Š.; Smazalová, E.; Vostřák, M.; Schubert, J. Properties of NiCrBSi Coating, as Sprayed and Remelted by Different Technologies. Surf. Coat. Technol. 2014, 253, 14–26. [Google Scholar] [CrossRef]
- Appiah, A.N.S.; Bialas, O.; Żuk, M.; Czupryński, A.; Sasu, D.K.; Adamiak, M. Hardfacing of Mild Steel with Wear-Resistant Ni-Based Powders Containing Tungsten Carbide Particles Using Powder Plasma Transferred Arc Welding Technology. Mater. Sci. Pol. 2022, 40, 42–63. [Google Scholar] [CrossRef]
- Praveen, A.S.; Arjunan, A. High-Temperature Oxidation and Erosion of HVOF Sprayed NiCrSiB/Al2O3 and NiCrSiB/WC Co Coatings. Appl. Surf. Sci. Adv. 2022, 7, 100191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, A.; Kotkowiak, M.; Tisov, O.; Gapiński, B.; Jakubowicz, M.; Sobkowiak, J.; Tuliński, M.; Legutko, S. The Wear Resistance of NiCrSiB-20%CaF2 Sinters in the Temperature Range 23–600 °C. Materials 2025, 18, 1405. https://doi.org/10.3390/ma18071405
Piasecki A, Kotkowiak M, Tisov O, Gapiński B, Jakubowicz M, Sobkowiak J, Tuliński M, Legutko S. The Wear Resistance of NiCrSiB-20%CaF2 Sinters in the Temperature Range 23–600 °C. Materials. 2025; 18(7):1405. https://doi.org/10.3390/ma18071405
Chicago/Turabian StylePiasecki, Adam, Mateusz Kotkowiak, Oleksandr Tisov, Bartosz Gapiński, Michał Jakubowicz, Julia Sobkowiak, Maciej Tuliński, and Stanisław Legutko. 2025. "The Wear Resistance of NiCrSiB-20%CaF2 Sinters in the Temperature Range 23–600 °C" Materials 18, no. 7: 1405. https://doi.org/10.3390/ma18071405
APA StylePiasecki, A., Kotkowiak, M., Tisov, O., Gapiński, B., Jakubowicz, M., Sobkowiak, J., Tuliński, M., & Legutko, S. (2025). The Wear Resistance of NiCrSiB-20%CaF2 Sinters in the Temperature Range 23–600 °C. Materials, 18(7), 1405. https://doi.org/10.3390/ma18071405