Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Structure Design
2.3. Fabrication Process
2.4. Microstructure Characterization and Mechanical Property Tests
2.5. Catalyst Property Tests
3. Results and Discussions
3.1. Processing Optimization
3.2. Hierarchical Structure
3.3. Catalyst Performance
3.4. Microstructural Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dokiya, M. SOFC system and technology. Solid State Ion. 2002, 152–153, 383–392. [Google Scholar] [CrossRef]
- Braun, R.J.; Klein, S.A.; Reindl, D.T. Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications. J. Power Sources 2006, 158, 1290–1305. [Google Scholar] [CrossRef]
- Aliyu, M.; AlZahrani, A.A. Integrated SMR-SOFC system for efficient hydrogen and power production. Int. J. Hydrogen Energy, 2024, in press. [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Sehested, J. Four challenges for nickel steam-reforming catalysts. Catal. Today 2006, 111, 103–110. [Google Scholar] [CrossRef]
- Taherian, Z.; Khataee, A.; Han, N.; Orooji, Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. J. Ind. Eng. Chem. 2022, 107, 20–30. [Google Scholar] [CrossRef]
- Nieva, M.A.; Villaverde, M.M.; Monzón, A.; Garetto, T.F.; Marchi, A.J. Steam-methane reforming at low temperature on nickel-based catalysts. Chem. Eng. J. 2014, 235, 158–166. [Google Scholar] [CrossRef]
- Profeti, L.P.R.; Ticianelli, E.A.; Assaf, E.M. Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel 2008, 87, 2076–2081. [Google Scholar] [CrossRef]
- Kuznetsov, V.V.; Vitovsky, O.V.; Gasenko, O.A. Methane steam reforming in an annular microchannel with Rh/Al2O3 catalyst. J. Eng. Thermophys. 2009, 18, 187–196. [Google Scholar] [CrossRef]
- Wei, Q.; Li, H.; Liu, G.; He, Y.; Wang, Y.; Tan, Y.E.; Wang, D.; Peng, X.; Yang, G.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Zhu, Y.; Liu, J.; Chen, H.; Guo, Q.; Du, C.; Miao, Z.; Cui, L.; Tian, F.; et al. Simulation and selection of static mixer, the core equipment of middle-low temperature coal tar pretreatment, based on the computational fluid dynamics. Chem. Eng. Process. Process Intensif. 2022, 173, 108816. [Google Scholar] [CrossRef]
- Rauline, D.; Tanguy, P.A.; Le Blévec, J.M.; Bousquet, J. Numerical investigation of the performance of several static mixers. Can. J. Chem. Eng. 1998, 76, 527–535. [Google Scholar] [CrossRef]
- Zheng, T.; Zhou, W.; Geng, D.; Li, Y.; Liu, Y.; Zhang, C. Methanol steam reforming microreactor with novel 3D-Printed porous stainless steel support as catalyst support. Int. J. Hydrogen Energy 2020, 45, 14006–14016. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Lin, Y.; Chen, L.; Chu, X.; Zheng, T.; Wan, S.; Lin, J. Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor. Appl. Energy 2019, 246, 24–37. [Google Scholar] [CrossRef]
- Pleass, C.; Jothi, S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Addit. Manuf. 2018, 24, 419–431. [Google Scholar] [CrossRef]
- Yan, X.; Gao, S.; Chang, C.; Huang, J.; Khanlari, K.; Dong, D.; Ma, W.; Fenineche, N.; Liao, H.; Liu, M. Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625. J. Mater. Process. Technol. 2021, 288, 116878. [Google Scholar] [CrossRef]
- Kreitcberg, A.; Brailovski, V.; Turenne, S. Elevated temperature mechanical behavior of IN625 alloy processed by laser powder-bed fusion. Mater. Sci. Eng. A 2017, 700, 540–553. [Google Scholar] [CrossRef]
- Bakare, M.S.; Voisey, K.T.; Roe, M.J.; McCartney, D.G. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625. Appl. Surf. Sci. 2010, 257, 786–794. [Google Scholar] [CrossRef]
- Tripathy, M.; Gaskell, K.; Laureto, J.; Davami, K.; Beheshti, A. Elevated temperature fretting wear study of additively manufactured inconel 625 superalloy. Addit. Manuf. 2023, 67, 103492. [Google Scholar] [CrossRef]
- Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A Gen. 2011, 408, 1–24. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Li, L.; Ren, X. High-temperature oxidation behavior and mechanism of Inconel 625 super-alloy fabricated by selective laser melting. Opt. Laser Technol. 2020, 132, 106509. [Google Scholar] [CrossRef]
- Michorczyk, P.; Hędrzak, E.; Węgrzyniak, A. Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J. Mater. Chem. A 2016, 4, 18753–18756. [Google Scholar] [CrossRef]
- Bazta, O.; Botana, F.J.; Calvino, J.J.; Cauqui, M.A.; Gatica, J.M.; Vidal, H.; González-Rovira, L.; López-Castro, J.; Yeste, M.P.; Blanco, G.; et al. Novel combination of 3D-printing and electrochemical deposition to design and prepare metallic honeycomb supported catalysts for dry reforming of methane. Chem. Eng. J. 2025, 506, 159939. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Song, J.; Yu, F.; Wong, N.H.; Sunarso, J.; Yang, N.; Meng, B.; Tan, X.; Liu, S. Highly stable 3D-printed monolithic Al2O3-supported Ni-based structured catalysts for dry reforming of methane. Addit. Manuf. 2024, 80, 103983. [Google Scholar] [CrossRef]
- Balla, P.; Shin, D.; Park, S.J.; Kwak, G.; Kim, S. Investigating copper impregnated 3D printed Al2O3 catalyst for methanol steam reforming. Fuel 2025, 390, 134772. [Google Scholar] [CrossRef]
- Zhao, X.; Karakaya, C.; Qian, M.; Zou, R.; Zhang, W.; Lu, Z.; Maiti, D.; Samanta, A.; Wan, W.; Liu, X.; et al. 3D printing synthesis of catalysts. Mater. Today Sustain. 2024, 26, 100746. [Google Scholar] [CrossRef]
- Agueniou, F.; Vidal, H.; de Dios López, J.; Hernández-Garrido, J.C.; Cauqui, M.A.; Botana, F.J.; Calvino, J.J.; Galvita, V.V.; Gatica, J.M. 3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: The Ni-based catalysts in methane dry reforming showcase. Catal. Commun. 2021, 148, 106181. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Demura, M.; Hirano, T. Enhanced catalytic activity of Ni3Al foils towards methane steam reforming by water vapor and hydrogen pretreatments. Int. J. Hydrogen Energy 2016, 41, 7352–7362. [Google Scholar] [CrossRef]
- Zhai, X.; Ding, S.; Liu, Z.; Jin, Y.; Cheng, Y. Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int. J. Hydrogen Energy 2011, 36, 482–489. [Google Scholar] [CrossRef]
- Noh, Y.S.; Lee, K.Y.; Moon, D.J. Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. Int. J. Hydrogen Energy 2019, 44, 21010–21019. [Google Scholar] [CrossRef]
- Ali, S.; Al-Marri, M.J.; Abdelmoneim, A.G.; Kumar, A.; Khader, M.M. Catalytic evaluation of nickel nanoparticles in methane steam reforming. Int. J. Hydrogen Energy 2016, 41, 22876–22885. [Google Scholar] [CrossRef]
- Hasani Estalkhi, M.; Yousefpour, M.; Koohestan, H.; Taherian, Z. Catalytic evaluation of Ni–3%Sr-/MCM-41 in dry and steam reforming of methane. Int. J. Hydrogen Energy 2024, 68, 1344–1351. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J. Steam reforming of hydrocarbons. A historical perspective. In Studies in Surface Science and Catalysis; Bao, X., Xu, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 121–126. [Google Scholar] [CrossRef]
Continuous/Dense Parts | Discontinuous/Porous Parts | |
---|---|---|
Single-track deposition | / | Power: 80–220 W Scanning speed: 700–1300 mm/s |
Bulk sample deposition | / | Power: 120 W Scanning speed: 800 mm/s Hatch distance: 0.21 mm Layer thickness: 40 μm |
SX-structured deposition | Power: 280 W Scanning speed: 950 mm/s Hatch distance: 0.11 mm Layer thickness: 40 μm | Power: 120 W Scanning speed: 800 mm/s Hatch distance: 0.21 mm Layer thickness: 40 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Zhu, J.; Liu, M.; Yan, X.; Lu, B.; Zhou, K. Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors. Materials 2025, 18, 1350. https://doi.org/10.3390/ma18061350
Dong D, Zhu J, Liu M, Yan X, Lu B, Zhou K. Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors. Materials. 2025; 18(6):1350. https://doi.org/10.3390/ma18061350
Chicago/Turabian StyleDong, Dongdong, Jiangqi Zhu, Min Liu, Xingchen Yan, Bingwen Lu, and Kesong Zhou. 2025. "Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors" Materials 18, no. 6: 1350. https://doi.org/10.3390/ma18061350
APA StyleDong, D., Zhu, J., Liu, M., Yan, X., Lu, B., & Zhou, K. (2025). Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors. Materials, 18(6), 1350. https://doi.org/10.3390/ma18061350