The Effect of Cementitious Macrocapsule Addition on the Hardened Properties of Concrete with Different Packing Structures
Abstract
:1. Introduction
2. Voids Ratio of Aggregate–Capsule Mixture
3. Materials and Methods
3.1. Raw Material
3.2. Concrete Mix Design
3.3. Mixing and Casting Process
3.4. Testing Program
4. Result and Discussion
4.1. The Effect of Fine Fraction in Capsule-Based Concrete Mixtures (In Relation to the First Program)
4.2. The Effect of Capsule Size and Capsule Dosage in Capsule-Based Concrete Mixtures (In Relation to the Second Program)
4.3. Capsule Breakage During Compression Tests
4.4. Bond Between the Capsule Shell and the Concrete Matrix
4.5. Capsule Resistance Towards Concrete Mixing
4.6. Practical Application of Capsules in Large-Scale Concrete Production
5. Conclusions
- The incorporation of 1.5 vol.% capsules led to a decrease in compressive strength. When the n was set from 0.2–0.4, a strength reduction of 11–12% was observed, while for n of 0.5–0.8, the reduction increased to 15–23%. Additionally, increasing the capsule dosage from 1 to 7 vol.% resulted in a gradual decline in compressive strength.
- Long capsules had a greater impact on concrete strength than short capsules, due to their shape and physical interaction with concrete components.
- The highest compressive strength was achieved in the concrete mixture with n of 0.4, which aligns well with the lowest voids ratio observed in the ternary aggregate mixture (TAM). A good relationship between the compressive strength and the voids ratio of the TAM was established, where a higher voids ratio of the TAM led to a lower compressive strength.
- The addition of capsules had no considerable effects on the hardened density or the compactness of concrete, as confirmed by UPV tests.
- During compression tests, some capsules ruptured, as indicated by wet spots on the concrete surface. The released sealing agent was able to widely spread throughout the matrix via cracks and capillary action.
- Microscopic and microstructure observations confirmed a good bond between the capsule shell and the concrete matrix, with no signs of delamination.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaheen, N.; Khushnood, R.A.; Memon, S.A.; Adnan, F. Feasibility Assessment of Newly Isolated Calcifying Bacterial Strains in Self-Healing Concrete. Constr. Build. Mater. 2023, 362, 129662. [Google Scholar] [CrossRef]
- Chuo, S.C.; Mohamed, S.F.; Setapar, S.H.M.; Ahmad, A.; Jawaid, M.; Wani, W.A.; Yaqoob, A.A.; Ibrahim, M.N.M. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials 2020, 13, 4993. [Google Scholar] [CrossRef] [PubMed]
- Palin, D.; Wiktor, V.; Jonkers, H.M. A Bacteria-Based Bead for Possible Self-Healing Marine Concrete Applications. Smart Mater. Struct. 2016, 25, 084008. [Google Scholar] [CrossRef]
- de Souza Oliveira, A.; da Fonseca Martins Gomes, O.; Ferrara, L.; de Moraes Rego Fairbairn, E.; Toledo Filho, R.D. An Overview of a Twofold Effect of Crystalline Admixtures in Cement-Based Materials: From Permeability-Reducers to Self-Healing Stimulators. J. Build. Eng. 2021, 41, 102400. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, R.; Li, Y.; Guan, X. Effect of Crystalline Admixtures on Mechanical, Self-Healing and Transport Properties of Engineered Cementitious Composite. Cem. Concr. Compos. 2021, 124, 104256. [Google Scholar] [CrossRef]
- Park, B.; Choi, Y.C. Self-Healing Capability of Cementitious Materials with Crystalline Admixtures and Super Absorbent Polymers (SAPs). Constr. Build. Mater. 2018, 189, 1054–1066. [Google Scholar] [CrossRef]
- Papaioannou, S.; Amenta, M.; Kilikoglou, V.; Gournis, D.; Karatasios, I. Synthesis and Integration of Cement-Based Capsules Modified with Sodium Silicate for Developing Self-Healing Cements. Constr. Build. Mater. 2022, 316, 125803. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, W.; Li, S.; Liu, R.; Zhang, Q.; Qi, G.; He, Z. Preparation and Performance Analysis of Dopamine Hydrochloride Functionalized E-51@MPF/SiO2 Double-Wall Microcapsules for Microcracks Self-Healing in Cement-Based Materials. Constr. Build. Mater. 2022, 325, 126622. [Google Scholar] [CrossRef]
- Mao, W.; Litina, C.; Al-Tabbaa, A. Development and Application of Novel Sodium Silicate Microcapsule-Based Self-Healing Oil Well Cement. Materials 2020, 13, 456. [Google Scholar] [CrossRef]
- Zhu, X.; Mignon, A.; Nielsen, S.D.; Zieger, S.E.; Koren, K.; Boon, N.; De Belie, N. Viability Determination of Bacillus Sphaericus after Encapsulation in Hydrogel for Self-Healing Concrete via Microcalorimetry and in Situ Oxygen Concentration Measurements. Cem. Concr. Compos. 2021, 119, 104006. [Google Scholar] [CrossRef]
- Wada, N.; Horiuchi, N.; Nakamura, M.; Nozaki, K.; Nagai, A.; Yamashita, K. Controlled Crystallization of Calcium Carbonate via Cooperation of Polyaspartic Acid and Polylysine under Double-Diffusion Conditions in Agar Hydrogels. ACS Omega 2018, 3, 16681–16692. [Google Scholar] [CrossRef]
- Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N. A Chitosan Based PH-Responsive Hydrogel for Encapsulation of Bacteria for Self-Sealing Concrete. Cem. Concr. Compos. 2018, 93, 309–322. [Google Scholar] [CrossRef]
- Snoeck, D.; Pel, L.; De Belie, N. Autogenous Healing in Cementitious Materials with Superabsorbent Polymers Quantified by Means of NMR. Sci. Rep. 2020, 10, 642. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Guizani, L.; Bhojaraju, C.; Ouellet-Plamondon, C. The Effect of Air-Entraining Admixture and Superabsorbent Polymer on Bond Behaviour of Steel Rebar in Pre-Cracked and Self-Healed Concrete. Constr. Build. Mater. 2021, 281, 122568. [Google Scholar] [CrossRef]
- Li, D.; Chen, B.; Chen, X.; Fu, B.; Wei, H.; Xiang, X. Synergetic Effect of Superabsorbent Polymer (SAP) and Crystalline Admixture (CA) on Mortar Macro-Crack Healing. Constr. Build. Mater. 2020, 247, 118521. [Google Scholar] [CrossRef]
- Xue, C.; Li, W.; Li, J.; Tam, V.W.Y.; Ye, G. A Review Study on Encapsulation-Based Self-Healing for Cementitious Materials. Struct. Concr. 2019, 20, 198–212. [Google Scholar] [CrossRef]
- Araújo, M.; Chatrabhuti, S.; Gurdebeke, S.; Alderete, N.; Van Tittelboom, K.; Raquez, J.M.; Cnudde, V.; Van Vlierberghe, S.; De Belie, N.; Gruyaert, E. Poly(Methyl Methacrylate) Capsules as an Alternative to the Proof-of-Concept’’ Glass Capsules Used in Self-Healing Concrete. Cem. Concr. Compos. 2018, 89, 260–271. [Google Scholar] [CrossRef]
- Formia, A.; Irico, S.; Bertola, F.; Canonico, F.; Antonaci, P.; Pugno, N.M.; Tulliani, J.M. Experimental Analysis of Self-Healing Cement-Based Materials Incorporating Extruded Cementitious Hollow Tubes. J. Intell. Mater. Syst. Struct. 2016, 27, 2633–2652. [Google Scholar] [CrossRef]
- Tsangouri, E.; Gilabert, F.A.; De Belie, N.; Van Hemelrijck, D.; Zhu, X.; Aggelis, D.G. Concrete Fracture Toughness Increase by Embedding Self-Healing Capsules Using an Integrated Experimental Approach. Constr. Build. Mater. 2019, 218, 424–433. [Google Scholar] [CrossRef]
- Fang, X.; Pan, Z.; Chen, A. Analytical Models to Estimate Efficiency of Capsule-Based Self-Healing Cementitious Materials Considering Effect of Capsule Shell Thickness. Constr. Build. Mater. 2021, 274, 121999. [Google Scholar] [CrossRef]
- Sinha, A.; Lim, D.Z.H.; Wei, J. A Lignin-Based Capsule System with Tunable Properties Tailored for Robust Self-Healing Concrete. Cem. Concr. Compos. 2022, 132, 104643. [Google Scholar] [CrossRef]
- Sinha, A.; Wang, Q.; Wei, J. Feasibility and Compatibility of a Biomass Capsule System in Self-Healing Concrete. Materials 2021, 14, 958. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H.; Simons, A.; Teirlynck, S.; Anglani, G.; Serna, P.; Tulliani, J.M.; Antonaci, P.; Minne, P.; Gruyaert, E. Prediction of Aggregate Packing with Tubular Macrocapsules in the Inert Structure of Self-Healing Concrete Based on Dewar’s Particle Packing Model. Materials 2024, 17, 2455. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H.; Gruyaert, E.; Serna, P. Optimised Mix Designs for Self-Healing Concrete; Universitat Politècnica de València: Valencia, Spain, 2023. [Google Scholar]
- Dewar, J. Computer Modelling of Concrete Mixtures; CRC Press: London, UK, 1999; ISBN 0419230203. [Google Scholar]
- EN 1097-3:1998; Tests for Mechanical and Physical Properties of Aggregates—Part 3: Determination of Loose Bulk Density and Voids. European Committee for Standardization: Brussels, Belgium, 1998.
- Anglani, G.; Tulliani, J.M.; Antonaci, P. Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading. Materials 2020, 13, 1149. [Google Scholar] [CrossRef]
- EN 12504-4:2021; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. European Committee for Standardization: Brussels, Belgium, 2021.
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2019.
- Van Tittelboom, K.; Wang, J.; Araújo, M.; Snoeck, D.; Gruyaert, E.; Debbaut, B.; Derluyn, H.; Cnudde, V.; Tsangouri, E.; Van Hemelrijck, D.; et al. Comparison of Different Approaches for Self-Healing Concrete in a Large-Scale Lab Test. Constr. Build. Mater. 2016, 107, 125–137. [Google Scholar] [CrossRef]
- Siahkouhi, M.; Han, X.; Wang, M.; Manalo, A.; Jing, G. Development and Performance Evaluation of Self-Healing Concrete Railway Sleepers Using Different Size PU Tubes. Eng. Struct. 2023, 283, 115920. [Google Scholar] [CrossRef]
Material | Unit | 0CEM54-20 | 0CEM54-30 | 0CEM54-40 | 0CEM54-50 | 0CEM54-60 | 0CEM54-70 | 0CEM54-80 |
CEM III/A | kg/m3 | 325 | 325 | 325 | 325 | 325 | 325 | 325 |
Sea sand 0/2.5 | kg/m3 | 370 | 555 | 740 | 924 | 1109 | 1293 | 1477 |
Gravel 4/8 | kg/m3 | 937 | 820 | 701 | 585 | 468 | 351 | 234 |
Gravel 8/16 | kg/m3 | 504 | 441 | 378 | 315 | 252 | 189 | 126 |
Effective water | kg/m3 | 163 | 163 | 163 | 163 | 163 | 163 | 163 |
Superplasticizer | kg/m3 | 0.00 | 0.00 | 0.89 | 1.00 | 1.20 | 1.50 | 1.80 |
Effective w/c | - | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
CEM54 capsules | % vcaps/vcon | - | - | - | - | - | - | - |
Fine fraction | - | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
Material | Unit | 1.5CEM54-20 | 1.5CEM54-30 | 1.5CEM54-40 | 1.5CEM54-50 | 1.5CEM54-60 | 1.5CEM54-70 | 1.5CEM54-80 |
CEM III/A | kg/m3 | 325 | 325 | 325 | 325 | 325 | 325 | 325 |
Sea sand 0/2.5 | kg/m3 | 362 | 543 | 724 | 904 | 1085 | 1265 | 1445 |
Gravel 4/8 | kg/m3 | 916 | 802 | 686 | 572 | 457 | 343 | 229 |
Gravel 8/16 | kg/m3 | 494 | 432 | 370 | 308 | 246 | 185 | 123 |
Effective water | kg/m3 | 163 | 163 | 163 | 163 | 163 | 163 | 163 |
Superplasticizer | kg/m3 | 0.00 | 0.00 | 0.89 | 1.00 | 1.20 | 1.50 | 1.80 |
Effective w/c | - | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
CEM54 capsules | % vcaps/vcon | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Fine fraction (n) | - | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
Material | Unit | REF | 1CEM54 | 3CEM54 | 5CEM54 | 7CEM54 | 1CEM23 | 3CEM23 | 5CEM23 | 7CEM23 |
CEM III/A | kg/m3 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 |
Sea sand 0/2.5 | kg/m3 | 740 | 740 | 740 | 740 | 740 | 740 | 740 | 740 | 740 |
Gravel 4/8 | kg/m3 | 701 | 694 | 680 | 666 | 652 | 694 | 680 | 666 | 652 |
Gravel 8/16 | kg/m3 | 378 | 374 | 366 | 359 | 351 | 374 | 366 | 359 | 351 |
Effective water | kg/m3 | 163 | 163 | 163 | 163 | 163 | 163 | 163 | 163 | 163 |
Superplasticizer | kg/m3 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
Effective w/c | - | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
CEM54 capsules | % vcaps/vagg | - | 1 | 3 | 5 | 7 | - | - | - | - |
CEM23 capsules | % vcaps/vagg | - | - | - | - | - | 1 | 3 | 5 | 7 |
Fine fraction (n) | - | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
First Program | Second Program | ||
---|---|---|---|
Mixture Comparison | p-Value | Mixture Comparison | p-Value |
0CEM54-20 vs. 1.5CEM54-20 | 0.754 | 1CEM54 vs. 1CEM23 | 0.471 |
0CEM54-30 vs. 1.5CEM54-30 | 0.256 | 3CEM54 vs. 3CEM23 | 0.543 |
0CEM54-40 vs. 1.5CEM54-40 | 0.012 | 5CEM54 vs. 5CEM23 | 0.420 |
0CEM54-50 vs. 1.5CEM54-50 | 0.969 | 7CEM54 vs. 7CEM23 | 0.079 |
0CEM54-60 vs. 1.5CEM54-60 | 0.890 | ||
0CEM54-70 vs. 1.5CEM54-70 | 0.199 |
Mixture | Number of Embedded Capsules Per Cube | Number of Broken Capsules in a Certain Crack Plane | ||
---|---|---|---|---|
Cube 1 | Cube 2 | Cube 3 | ||
1CEM54 | 5 | 2 | 0 | 0 |
3CEM54 | 13 | 1 | 0 | 0 |
5CEM54 | 21 | 5 | 4 | 2 |
7CEM54 | 29 | 5 | 2 | 7 |
1CEM23 | 4 | 0 | 0 | 1 |
3CEM23 | 11 | 0 | 0 | 0 |
5CEM23 | 18 | 0 | 0 | 0 |
7CEM23 | 25 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermawan, H.; Antonaci, P.; Gruyaert, E. The Effect of Cementitious Macrocapsule Addition on the Hardened Properties of Concrete with Different Packing Structures. Materials 2025, 18, 1302. https://doi.org/10.3390/ma18061302
Hermawan H, Antonaci P, Gruyaert E. The Effect of Cementitious Macrocapsule Addition on the Hardened Properties of Concrete with Different Packing Structures. Materials. 2025; 18(6):1302. https://doi.org/10.3390/ma18061302
Chicago/Turabian StyleHermawan, Harry, Paola Antonaci, and Elke Gruyaert. 2025. "The Effect of Cementitious Macrocapsule Addition on the Hardened Properties of Concrete with Different Packing Structures" Materials 18, no. 6: 1302. https://doi.org/10.3390/ma18061302
APA StyleHermawan, H., Antonaci, P., & Gruyaert, E. (2025). The Effect of Cementitious Macrocapsule Addition on the Hardened Properties of Concrete with Different Packing Structures. Materials, 18(6), 1302. https://doi.org/10.3390/ma18061302