Study on the Reasonability of Single-Objective Optimization in Miniscrew Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Testing Methods and Equipment
2.3. Taguchi Method’s Quality Characteristics and ANOVA
3. Results
4. Discussion
5. Conclusions
- The Taguchi method effectively reduces the number of experiments.
- This study confirmed that the same control factor can have opposite effects on different evaluation indicators.
- When researching the optimization design of miniscrews, focusing solely on a single indicator would be unreasonable.
- Multi-objective optimization should be considered to determine the optimal parameters.
- This study provides an optimization result based on equal weighting, which can serve as a valuable reference for manufacturers in designing miniscrews.
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migliorati, M.; Benedicenti, S.; Signori, A.; Drago, S.; Barberis, F.; Tournier, H.; Silvestrini-Biavati, A. Miniscrew design and bone characteristics: An experimental study of primary stability. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 228–234. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, J.S.; Roberts, W.E. Failure rates for stainless steel versus titanium alloy infrazygomatic crest bone screws: A single-center, randomized double-blind clinical trial. Angle Orthod. 2018, 89, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Giuliano Maino, B.; Pagin, P.; Di Blasio, A. Success of miniscrews used as anchorage for orthodontic treatment: Analysis of different factors. Prog. Orthod. 2012, 13, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, J.H.; Bay, R.C.; Choi, S.; Chae, J. Cortical bone thickness and bone density effects on miniscrew success rates: A systematic review and meta-analysis. Orthod. Craniofacial Res. 2020, 24, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Baumgaertel, S.; Palomo, J.M.; Zaverdinos, M.; Elshebiny, T. Ten years of miniscrew use in a U.S. orthodontic residency program. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Yow, M.; Chew, M.T.; Foong, W.C.; Womg, H.C. A study of success rate of miniscrew implants as temporary anchorage devices in Singapore. Int. J. Dent. 2015, 2015, 294670. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.; Goonewardene, M.S.; Allan, B.P.; Sugawara, J. Success rates of a skeletal anchorage system in orthodontics: A retro-spective analysis. Angle Orthod. 2018, 88, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Behrents, R.G.; Kim, K.B.; Kyung, H.-M.; Buschang, P.H. Effects of screw and host factors on insertion torque and pullout strength. Angle Orthod. 2012, 82, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Reynders, R.A.M.; Ronchi, L.; Ladu, L.; van Etten-Jamaludin, F.; Bipat, S. Insertion torque and success of orthodontic mini-implants: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 596–614.e5. [Google Scholar] [CrossRef]
- Jedliński, M.; Janiszewska-Olszowska, J.; Mazur, M.; Grocholewicz, K.; Suárez Suquía, P.; Suárez Quintanilla, D. How does orthodontic mini-implant thread minidesign influence the stability?—Systematic review with meta-analysis. J. Clin. Med. 2022, 11, 5304. [Google Scholar] [CrossRef]
- Katyal, S.; Bhatia, N.K.; Sardana, R.; Singh, S.; Chugh, A.; Shamim, M.A.; Anil, A.; Negi, A.; Chugh, V.K. Success rate and factors affecting stability of infrazygomatic miniscrew implants: A systematic review and meta-analysis. Eur. J. Orthod. 2024, 47, cjae074. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Choi, S.-H.; Yu, H.-S.; Erenebat, T.; Liu, J.; Cha, J.-Y. Stability and success rate of dual-thread miniscrews. Angle Orthod. 2021, 91, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Çaglar, S.; Özlem, A. Techniques to measure miniscrew implant stability. J. Orthod. Res. 2013, 1, 5–10. [Google Scholar] [CrossRef]
- Mutheus, M.P.; Matilde, G.N.; Lincolin, I.N. Primary stability of orthodontic mini-implants inserted into maxilla and mandible of swine. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2012, 113, 748–754. [Google Scholar]
- Kuroda, S.; Sugawara, Y.; Deguchi, T.; Kyung, H.-M.; Takano-Yamamoto, T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Mitchell, B.; Sakamaki, T.; Hirai, Y.; Kim, D.-G.; Deguchi, T.; Suzuki, M.; Ueda, K.; Tanaka, E. Mechanical stability of orthodontic miniscrew depends on a thread shape. J. Dent. Sci. 2021, 17, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Ottenstreuer, S.; Su, Y.-Y.; Drescher, D. Impact of Implant Design on Primary Stability of Orthodontic Mini-implants. J. Orofac. Orthop. Kieferorthopadie 2008, 69, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mešić, E.; Muratović, E.; Redžepagić-Vražalica, L.; Pervan, N.; Muminović, A.J.; Delić, M.; Glušac, M. Experimental & FEM Analysis of Orthodontic Mini-Implant Design on Primary Stability. Appl. Sci. 2021, 11, 5461. [Google Scholar] [CrossRef]
- Cozzani, M.; Nucci, L.; Lupini, D.; Dolatshahizand, H.; Fazeli, D.; Barzkar, E.; Naeini, E.; Jamilian, A. The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study. Int. Orthod. 2020, 18, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Montasser, M.A.; Radwan, E.S.; Bernardinelli, L.; Alcozer, R.; Gandini, P.; Sfondrini, M.F. Reliability of orthodontic minis-crews: Bending and maximum load of different Ti-6Al-4V titanium and stainless steel temporary anchorage devices (TADs). Materials 2018, 11, 1138. [Google Scholar] [CrossRef]
- Kim, G.-T.; Jin, J.; Mangal, U.; Lee, K.-J.; Kim, K.-M.; Choi, S.-H.; Kwon, J.-S. Primary Stability of Orthodontic Titanium Miniscrews due to Cortical Bone Density and Re-Insertion. Materials 2020, 13, 4433. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, A.C.; Marquezan, M.; Lima, I.; Lopes, R.T.; Nojima, L.I.; Sant'Anna, E.F. Influence of bone architecture on the primary stability of different mini-implant designs. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 45–51. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Yu, J.-M.; Kim, H.-S.; Lee, J.-S.; Yeon, C.-M.; Park, K.-S.; Choi, S.-H.; Lee, S.-Y. Influence of Orthodontic Anchor Screw Anchorage Method on the Stability of Artificial Bone: An In Vitro Study. Materials 2020, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.E.; Janson, G.; Chiqueto, K.; Garib, D.G.; Janson, M. Effect of mini-implant diameter on fracture risk and self-drilling efficacy. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e181–e192. [Google Scholar] [CrossRef]
- Gracco, A.; Giagnorio, C.; Incerti Parenti, S.; Alessandri Bonetti, G.A.; Siciliani, G.S. Effects of thread shape on the pullout strength of miniscrews. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Tepedino, M.; Masedu, F.; Chimenti, C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews—An in vitro study. Head Face Med. 2017, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-A.; Cha, J.-Y.; Hwang, C.-J. Insertion Torque of Orthodontic Miniscrews According to Changes in Shape, Diameter and Length. Angle Orthod. 2008, 78, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Radwan, E.S.; Montasser, M.A.; Maher, A. Influence of geometric design characteristics on primary stability of orthodontic miniscrews. J. Orofac. Orthop. Kieferorthopadie 2018, 79, 191–203. [Google Scholar] [CrossRef]
- Migliorati, M.; Benedicenti, S.; Signori, A.; Drago, S.; Cirillo, P.; Barberis, F.; Biavati, A.S. Thread shape factor: Evaluation of three different orthodontic miniscrews stability. Eur. J. Orthod. 2012, 35, 401–405. [Google Scholar] [CrossRef]
- Sharma, A.; Maurya, N.K.; Singh, Y.; Singh, N.K.; Gupta, S.K. Effect of design parameters on performance and emissions of DI diesel engine running on biodiesel-diesel blends: Taguchi and utility theory. Fuel 2020, 281, 118765. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, W.; Fan, S.; Zhao, L.; Yu, Y.; Lu, Y.; Yao, Q.; Wang, W.; Chang, S. Effect of thread depth and thread pitch on the primary stability of miniscrews receiving a torque load: A finite element analysis. J. Orofac. Orthop. 2023, 84, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Tanaka, E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dent. Sci. Rev. 2014, 50, 79–85. [Google Scholar] [CrossRef]
- Kitahara-Céia, F.M.; Assad-Loss, T.F.; Mucha, J.N.; Elias, C.N. Morphological evaluation of the active tip of six types of orthodontic mini-implants. Dent. Press. J. Orthod. 2013, 18, 36–41. [Google Scholar] [CrossRef] [PubMed]
- ASTM F138-19; Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). ASTM International: West Conshohocken, PA, USA, 2019.
- ISO 5832-1:2016; Implants for Surgery—Metallic Materials—Part 1: Wrought Stainless Steel. ISO: Geneva, Switzerland, 2016.
- ASTM F1839-08; Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM F543-17; Standard Specification and Test Methods for Metallic Medical Bone Screws. ASTM International: West Conshohocken, PA, USA, 2017.
- Topouzelis, N.; Tsaousoglou, P. Clinical factors correlated with the success rate of miniscrews in orthodontic treatment. Int. J. Oral Sci. 2012, 4, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.N.; Zogakis, I.P.; Papadopoulos, M.A. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 577–595.e7. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Kim, G.-T.; Kwon, J.-S.; Choi, S.-H. Effects of Intrabony Length and Cortical Bone Density on the Primary Stability of Orthodontic Miniscrews. Materials 2020, 13, 5615. [Google Scholar] [CrossRef]
- Brinley, C.L.; Behrents, R.; Kim, K.B.; Condoor, S.; Kyung, H.-M.; Buschang, P.H. Pitch and Longitudinal Fluting Effects on the Primary Stability of Miniscrew Implants. Angle Orthod. 2009, 79, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.Y.; Suzuki, B. Placement and removal torque values of orthodontic miniscrew implants. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, A.S.; Naseri, H.; Nourisari, M.; Qaffari, H.; Kashaniaraqbidi, M.; Eslamiamirabadi, R. The clinical success of self-tapping and self-drilling orthodontic minis-crews. Eur. J. Orthod. 2015, 7, 113–137. [Google Scholar]
- Yi, J.; Ge, M.; Li, M.; Li, C.; Li, Y.; Li, X.; Zhao, Z. Comparison of the success rate between self-drilling and self-tapping miniscrews: A systematic review and meta-analysis. Eur. J. Orthod. 2016, 39, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Valeri, C.; Aloisio, A.; Quinzi, V.; di Stefano, G.; Marzo, G. Characterizing orthodontic mini-screws in the hard palate of pigs: An experimental and finite-element study. Heliyon 2024, 10, e24952. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Santos, C.; Sousa-Santos, S.; Mendes, J.; Coelho, C.; Aroso, C.; Sousa-Santos, P.; Mendes, J.M. The Influence of the Diameter of Orthodontic Mini-Implants on Primary Stability: Bending Tests—An In Vitro Study. Materials 2024, 17, 3149. [Google Scholar] [CrossRef] [PubMed]
- Do, T.V.; Hsu, Q.C.; Chen, P.H.; Chen, Y.L. Study on the Performance of Orthodontic Self-Drilling Correction Screw of Ti6Al4V and Stainless 316L. Mater. Sci. Forum 2016, 872, 276–280. [Google Scholar]
- Boukraa, M.; Chekifi, T.; Lebaal, N. Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis. Exp. Tech. 2022, 47, 603–617. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Zheng, J.-Y.; Kuo, P.-C.; Huang, C.-D.; Fung, C.-P. Process Optimization of Inconel 718 Alloy Produced by Laser Powder Bed Fusion. Metals 2022, 12, 1494. [Google Scholar] [CrossRef]
- Phan, T.-D.; Do, T.-V.; Pham, T.-L.; Duong, H.-L. Optimization of cutting parameters and nanoparticle concentration in hard milling for surface roughness of JIS SKD61 steel using linear regression and Taguchi method. Lect. Notes Netw. Syst. 2020, 2021, 628–635. [Google Scholar]
Trial | Control Factor Level | |||
---|---|---|---|---|
Thread Pitch [mm] | Thread Depth [mm] | Tip Taper Angle [Degree] | Self-Tapping Notch [Amount] | |
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
Control Factor | Level | ||
---|---|---|---|
1 | 2 | 3 | |
A. Thread pitch [mm] | 0.75 | 0.8 | 0.85 |
B. Thread depth [mm] | 0.25 | 0.3 | 0.35 |
C. Tip taper angle [degree] | 20.4 | 24.8 | 29.1 |
D. Self-tapping notch [amount] | 0 | 1 | 2 |
Trial | MIT | MIIA | MPS | MBS | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | S/N | Mean ± SD | S/N | Mean ± SD | S/N | Mean ± SD | S/N | |
[cN·cm] | [dB] | [degree] | [dB] | [N] | [dB] | [N] | [dB] | |
1 | 12.75 ± 0.51 | −22.11 | 296.78 ± 08.60 | −49.45 | 509.02 ± 04.92 | 54.13 | 112.50 ± 8.23 | 40.97 |
2 | 11.98 ± 0.20 | −21.57 | 318.46 ± 09.01 | −50.06 | 467.84 ± 10.92 | 53.40 | 106.34 ± 7.04 | 40.49 |
3 | 09.71 ± 0.16 | −19.74 | 331.40 ± 16.13 | −50.42 | 435.91 ± 24.49 | 52.75 | 085.40 ± 2.75 | 38.62 |
4 | 12.06 ± 0.39 | −21.63 | 291.26 ± 12.76 | −49.29 | 448.89 ± 16.31 | 53.03 | 124.29 ± 4.56 | 41.87 |
5 | 14.87 ± 0.33 | −23.45 | 282.98 ± 12.02 | −49.04 | 560.35 ± 14.47 | 54.96 | 100.73 ± 3.18 | 40.05 |
6 | 13.00 ± 0.15 | −22.28 | 297.12 ± 07.79 | −49.46 | 514.32 ± 06.11 | 54.22 | 087.51 ± 4.09 | 38.82 |
7 | 12.87 ± 0.63 | −22.20 | 367.04 ± 10.92 | −51.30 | 477.78 ± 05.40 | 53.58 | 119.29 ± 3.05 | 41.53 |
8 | 13.63 ± 0.28 | −22.69 | 259.54 ± 12.03 | −48.29 | 498.02 ± 09.39 | 53.94 | 095.54 ± 2.10 | 39.60 |
9 | 15.34 ± 0.28 | −23.72 | 297.34 ± 10.13 | −49.47 | 557.00 ± 19.18 | 54.90 | 079.53 ± 1.61 | 38.01 |
Control Factor | Contribution [%] | |||
---|---|---|---|---|
MIT | MIIA | MPS | MBS | |
A. Thread pitch | 44.9 | 13.0 | 19.7 | 3.0 |
B. Thread depth | 7.2 | 21.2 | 9.1 | 91.9 |
C. Tip taper angle | 5.4 | 35.6 | 4.6 | 1.3 |
D. Self-tapping notch | 42.5 | 30.3 | 66.6 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Hwang, J.-R.; Fung, C.-P. Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials 2025, 18, 973. https://doi.org/10.3390/ma18050973
Li Y-C, Hwang J-R, Fung C-P. Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials. 2025; 18(5):973. https://doi.org/10.3390/ma18050973
Chicago/Turabian StyleLi, Yu-Ching, Jiun-Ren Hwang, and Chin-Ping Fung. 2025. "Study on the Reasonability of Single-Objective Optimization in Miniscrew Design" Materials 18, no. 5: 973. https://doi.org/10.3390/ma18050973
APA StyleLi, Y.-C., Hwang, J.-R., & Fung, C.-P. (2025). Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials, 18(5), 973. https://doi.org/10.3390/ma18050973