Modeling of Electrical Heating and Cooling for Carbon Textile Reinforced Concrete
Abstract
:1. Introduction
2. Materials
3. Thermal Model
3.1. Phase 3: Cooling
- = mass of the sample for cooling [kg];
- = specific heat capacity for cooling [J/kg °C];
- = surface temperature [°C];
- = time [s];
- = energy transfer coefficient towards the outside for cooling [W/m2 °C];
- = surface of the sample [m2];
- = environmental temperature [°C].
3.2. Phase 1: Heating
- = mass of the sample [kg];
- = specific heat capacity for heating [J/kg °C];
- = sample temperature [°C];
- = time [s];
- = applied electrical power [W];
- = energy transfer coefficient towards the outside for heating [W/m2 °C];
- = surface of the sample [m2];
- = environmental temperature [°C].
3.3. Phase 2: Constant Temperature
3.4. Determination of Material-Specific Parameters
4. Experimental Methods
4.1. Methods
4.2. Experimental Setup and Testing Procedure
5. Results
5.1. Heating Tests
5.2. Cooling Tests
6. Conclusions and Outlook
- Overall, a thermal model was developed based on Newtons’s law of cooling with Joule’s heating principle. The temperature development is segmented into three distinct phases: Phase 1 (heating phase), Phase 2 (constant phase), and Phase 3 (cooling phase). The model formulation for temperature calculation accounts for these phases along with their respective boundary conditions and geometries. In addition, the prediction of the temperature profile for electrically heated CTRCs requires material-specific parameters. These parameters can be determined through laboratory experiments for each material, derived as fitting results.
- The thermal model successfully predicts the temperature development in CTRC, achieving a high correlation with experimental data. The comparison between calculated and measured temperature profiles demonstrates an average coefficient of determination of R2 = 0.94 for heating and R2 = 0.98 for cooling, confirming the applicability.
- For the investigated CTRC material combinations, the material-specific parameters hhAh and hiAi/micp_i for heating and cooling were determined. For the heating phase, Newton’s law considers the body consisting of both the CTR and the mortar, while for the cooling phase, only the mortar cools as the body interacting with the ambient temperature. Using the material-specific parameters, the temperature profiles were calculated.
- The results indicate remarkable variations in the electrical power required to attain equivalent temperature levels depending on the CTR material. For instance, for a temperature level of ΔT = 35 °C, CTRC-EP-M1 required P = 58.3 W, whereas CTRC-P-M1 only requires P = 34 W. This effect becomes more pronounced at higher temperature levels, with differences in electrical power between the reinforcements reaching up to ΔP = 38.9 W. The results suggest that the impregnation of the CTR significantly impacts contact quality, which, in turn, affects both the electrical resistance and the temperature development within the CTRC.
- In contrast to the CTR type, the variation in mortar type (M1 vs. M2) had no significant effect on the electrical power required for heating. Both mortars exhibited comparable thermal behavior, as seen in the heating tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTRC | Carbon textile reinforced concrete |
CTR | Carbon textile reinforcement |
References
- Asgharzadeh, A. Durability of Polymer Impregnated Carbon Textiles as CP Anode for Reinforced Concrete. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 2019. [Google Scholar]
- Morales Cruz, C. Crack-Distributing Carbon Textile Reinforced Concrete Protection Layers. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2020. [Google Scholar]
- Dahlhoff, A.; Morales Cruz, C.; Raupach, M. Influence of Selected Impregnation Materials on the Tensile Strength for Carbon Textile Reinforced Concrete at Elevated Temperatures. Buildings 2022, 12, 2177. [Google Scholar] [CrossRef]
- Dahlhoff, A.; Raupach, M. Electrical Heating of Carbon Textile Reinforced Concrete—Possible Effects on Tensile Load-Bearing Behavior. Appl. Sci. 2024, 14, 4430. [Google Scholar] [CrossRef]
- Tröger, M.S.F.; Große, M.S.S.; Rudloff, M.E.D.-I.T.; Heimbold, I.T. Entwicklung einer elektrischen Kontaktierung für multifunktionale Carbonfaser-Strukturen in Beton. In Proceedings of the 19 AALE-Konferenz, Luxemburg, 8–10 March 2023. [Google Scholar]
- Karalis, G.; Zhao, J.; May, M.; Liebscher, M.; Wollny, I.; Dong, W.; Köberle, T.; Tzounis, L.; Kaliske, M.; Mechtcherine, V. Efficient Joule heaters based on mineral-impregnated carbon-fiber reinforcing grids: An experimental and numerical study on a multifunctional concrete structure as an electrothermal device. Carbon 2024, 222, 118898. [Google Scholar] [CrossRef]
- Tuan, C.Y. Roca spur bridge: The implementation of an innovative deicing technology. J. Cold Reg. Eng. 2008, 22, 1–15. [Google Scholar] [CrossRef]
- Junger, D.; Liebscher, M.; Zhao, J.; Mechtcherine, V. Joule heating as a smart approach in enhancing early strength development of mineral-impregnated carbon-fibre composites (MCF) made with geopolymer. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106750. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Y.; Ma, D. Melting snow on airport cement concrete pavement with carbon fibre heating wires. Mater. Res. Innov. 2015, 19, S10–S95. [Google Scholar] [CrossRef]
- Tuan, C.Y. Electrical resistance heating of conductive concrete containing steel fibers and shavings. Mater. J. 2004, 101, 65–71. [Google Scholar] [CrossRef]
- Chung, D. Self-heating structural materials. Smart Mater. Struct. 2004, 13, 562. [Google Scholar] [CrossRef]
- Tuan, C.Y. Implementation of Conductive Concrete for Deicing (Roca Bridge). Nebraska Department of Transprotation Research Report: Project No. SPR-P1(04) P565. 2008, 25. Available online: https://digitalcommons.unl.edu/ndor/25 (accessed on 25 February 2024).
- Tuan, C.Y.; Yehia, S. Evaluation of electrically conductive concrete containing carbon products for deicing. Mater. J. 2004, 101, 287–293. [Google Scholar] [CrossRef]
- Yehia, S.A.; Tuan, C.Y. Thin conductive concrete overlay for bridge deck deicing and anti-icing. Transp. Res. Rec. 2000, 1698, 45–53. [Google Scholar] [CrossRef]
- Yehia, S.; Tuan, C.Y.; Ferdon, D.; Chen, B. Conductive concrete overlay for bridge deck deicing: Mixture proportioning, optimization, and properties. Mater. J. 2000, 97, 172–181. [Google Scholar] [CrossRef]
- Yehia, S.A.; Tuan, C.Y. Bridge deck deicing. In Proceedings of the Crossroads 2000 Conference Transportation Conference Proceedings, Iowa State University, Ames, IA, USA, 19–20 August 1998; pp. 51–57. [Google Scholar]
- Zhao, H.; Wu, Z.; Wang, S.; Zheng, J.; Che, G. Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol. 2011, 65, 413–420. [Google Scholar] [CrossRef]
- He, Y.; Zhang, M.; Li, W.; Li, M.; Zhang, S.; Deng, G.; Wang, X. Electric heating curing regimes of temperature self-controlled concrete with nano-carbon black for performance improvement in cold regions. Cem. Concr. Compos. 2024, 152, 105689. [Google Scholar] [CrossRef]
- Salim, M.U.; Nishat, F.M.; Oh, T.; Yoo, D.-Y.; Song, Y.; Ozbakkaloglu, T.; Yeon, J.H. Electrical resistivity and joule heating characteristics of cementitious composites incorporating multi-walled carbon nanotubes and carbon fibers. Materials 2022, 15, 8055. [Google Scholar] [CrossRef] [PubMed]
- Gomis, J.; Galao, O.; Gomis, V.; Zornoza, E.; Garcés, P. Self-heating and deicing conductive cement. Experimental study and modeling. Constr. Build. Mater. 2015, 75, 442–449. [Google Scholar] [CrossRef]
- Rao, R.; Wang, H.; Wang, H.; Tuan, C.Y.; Ye, M. Models for estimating the thermal properties of electric heating concrete containing steel fiber and graphite. Compos. Part B Eng. 2019, 164, 116–120. [Google Scholar] [CrossRef]
- Schöffel, J.; Abdelkaf, N. Rethinking construction: The market for heatable carbon concrete building components. In Fraunhofer-Zentrum für Internationales Management und Wissensökonomie IMW Jahresbericht 2018/2019; Fraunhofer IMW: Leipzig, Germany, 2019; pp. 66–67. [Google Scholar]
- C³InteF—Integration der Heizfunktion in Bauelementen aus Carbonbeton. Available online: https://www.imw.fraunhofer.de/de/forschung/unternehmensentwicklung/geschaeftsmodelle/projekte/c-intef.html (accessed on 25 February 2024).
- Load-Bearing Concrete Members with Adaptive Heating Structures Made of Carbon Fibres for Buildings with Climate Neutral Energy Strategy. Available online: https://tu-dresden.de/bu/bauingenieurwesen/imb/forschung/Forschungsfelder/CRC/fue-crc/FuE_finished/smarttex?set_language=en (accessed on 25 February 2024).
- Frenzel, M.; Stelzmann, M.; Söhnchen, A. CUBE—Demonstration areas and exhibition objects. Beton Stahlbetonbau 2023, 118, 133–139. [Google Scholar] [CrossRef]
- Abdualla, H.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Taylor, P.C.; Turkan, Y. System requirements for electrically conductive concrete heated pavements. Transp. Res. Rec. 2016, 2569, 70–79. [Google Scholar] [CrossRef]
- Xu, S.; Yu, W.; Song, S. Numerical simulation and experimental study on electrothermal properties of carbon/glass fiber hybrid textile reinforced concrete. Sci. China Technol. Sci. 2011, 54, 2421–2428. [Google Scholar] [CrossRef]
- Grigull, U. Das Newtonsche Abkühlungsgesetz: Bemerkungen zu einer Arbeit von Isaac Newton aus dem Jahre 1701. Abh. Baunschweigischen Wiss. Ges. 1978, 29, 7–31. [Google Scholar]
- Newton, I. VII. Scala graduum caloris. Philos. Trans. R. Soc. Lond. 1701, 22, 824–829. [Google Scholar] [CrossRef]
- TR IH: Technische Regel—Instandhaltung von Betonbauwerken (TR Instandhaltung)—Teil 1: Anwendungsbereich und Planung der Instandhaltung; Deutsches Institut für Bautechnik (DIBt): Berlin, Germany, 2020.
- TR IH: Technische Regel—Instandhaltung von Betonbauwerken (TR Instandhaltung)—Teil 2: Merkmale von Produkten oder Systemen für die Instand-setzung und Regelungen für deren Verwendung; Deutsches Institut für Bautechnik (DIBt): Berlin, Germany, 2020.
- Technical Prdoct Data Sheet—Solidian ANTICRACK. Available online: https://www.solidian-kelteks.com/en/products/construction/reinforcements/meshes/rigid-meshes/anticrack-detail (accessed on 12 December 2024).
- Technical Product Data Sheet—HTC. Available online: https://www.hitexbau.com/menu/products/ (accessed on 17 April 2024).
- Technical Product Data Sheet—StoCrete TS 200. 2020. Available online: https://www.sto-sea.com/en/products--systems/product-guides/product_32640.html (accessed on 25 February 2024).
- Technical Product Data Sheet—StoCrete TS 203. 2024. Available online: https://www.stocretec.de/s/p/a1F2p00000NwG6bEAF/stocrete-ts-203 (accessed on 25 February 2024).
- DIN EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). German version EN 1015-3:1999+A1:2004+A2:2006; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 2007. [CrossRef]
- DIN EN 1015-6; Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar. German version EN 1015-6:1998+A1:2006; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 2007. [CrossRef]
- DIN EN 1015-7; Methods of Test for Mortar for Masonry—Part 7: Determination of Air Content of Fresh Mortar. German version EN 1015-7:1998; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 1998. [CrossRef]
- DIN EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. German version EN 1015-11:2019; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 2020. [CrossRef]
Reinforcement | Roving | Roving | Textile | Titer | Average Tensile Strength ± Standard Deviation (1) (Warp Direction) |
---|---|---|---|---|---|
Axis Distance | Cross-Section | Cross-Section | |||
Longitudinal/Transversal | |||||
[-] | [mm] | [mm2] | [mm2/m] | [tex] | [MPa] |
CTR-EP-Sand | 21/21 | 0.91/0.91 | 43/43 | 1600/1600 | 4200 ± 215 |
CTR-P | 12/16 | 1.81/0.45 | 142/25 | 3220/800 | 2920 ± 95 |
Mortar | Compressive Strength (1) | Bending Strength (1) | Young’s Modulus |
---|---|---|---|
[-] | [MPa] | [MPa] | [GPa] |
M1 | 56.3 ± 1.5 | 9.6 ± 0.6 | 21 |
M2 | 62.6 ± 1.4 | 8.3 ± 0.4 | 27 |
Test Series | CTR | Mortar | Heating | Cooling |
---|---|---|---|---|
Temperature Difference ΔT Related to Tenv in °C | ||||
CTRC-EP-M1 | CTR-EP-Sand | M1 | ΔT = 5 °C to 40 °C in 2.5 °C steps | 15 |
CTRC-EP-M2 | CTR-EP-Sand | M2 | ΔT = 5 °C to 40 °C in 2.5 °C steps | 15 |
CTRC-P-M1 | CTR-P | M1 | ΔT = 5 °C to 40 °C in 2.5 °C steps | 15 |
CTRC-P-M2 | CTR-P | M2 | ΔT = 5 °C to 40 °C in 2.5 °C steps | 15 |
Temperature Rise ΔT | CTRC-EP-M1 | CTRC-EP-M2 | ||||
---|---|---|---|---|---|---|
Voltage | Current | Electric Power | Voltage | Current | Electric Power | |
[°C] | [V] | [A] | [W] | [V] | [A] | [W] |
5 | 5.4 | 1.1 | 5.7 | 5.5 | 1.1 | 6.2 |
7.5 | 6.5 | 1.4 | 8.9 | 6.8 | 1.5 | 9.9 |
10 | 8.5 | 1.9 | 15.7 | 7.2 | 1.6 | 11.2 |
12.5 | 9.8 | 1.8 | 17.9 | 8.8 | 2.0 | 17.4 |
15 | 9.0 | 2.1 | 18.9 | 11.8 | 2.1 | 24.7 |
17.5 | 12.8 | 2.1 | 26.5 | 13.0 | 2.2 | 28.6 |
20 | 13.0 | 2.5 | 32.9 | 12.8 | 2.2 | 28.7 |
22.5 | 13.0 | 2.6 | 33.4 | 14.5 | 2.6 | 37.7 |
25 (1) | 17.0 | 3.5 | 59.8 | 16.0 | 2.8 | 44.6 |
27.5 (2) | 15.5 | 2.8 | 42.8 | 17.0 | 3.1 | 52.0 |
30 | 13.0 | 2.9 | 37.2 | 19.0 | 2.5 | 46.6 |
32.5 (1),(2) | 16.0 | 3.9 | 62.1 | 17.0 | 3.5 | 59.2 |
35 | 17.5 | 3.3 | 58.3 | 16.5 | 3.7 | 60.7 |
37.5 (1) | 21.0 | 4.0 | 84.0 | 19.0 | 3.6 | 67.6 |
40 | 20.0 | 3.9 | 78.2 | 18.5 | 4.2 | 77.7 |
Temperature Rise ΔT | CTRC-P-M1 | CTRC-P-M2 | ||||
---|---|---|---|---|---|---|
Voltage | Current | Electric Power | Voltage | Current | Electric Power | |
[°C] | [V] | [A] | [W] | [V] | [A] | [W] |
5 | 2.8 | 1.7 | 4.7 | 2.8 | 1.7 | 4.6 |
7.5 | 3.3 | 2.0 | 6.6 | 3.3 | 2.0 | 6.6 |
10 | 3.8 | 2.3 | 8.6 | 3.9 | 2.3 | 8.9 |
12.5 | 4.2 | 2.6 | 10.7 | 4.2 | 2.6 | 10.8 |
15 | 4.6 | 2.8 | 12.9 | 4.7 | 3.0 | 14.1 |
17.5 | 5.3 | 3.2 | 17.2 | 5.3 | 3.2 | 16.9 |
20 | 5.6 | 3.4 | 18.9 | 5.5 | 3.3 | 18.0 |
22.5 | 6.0 | 3.6 | 21.8 | 5.9 | 3.6 | 21.1 |
25 | 6.5 | 3.9 | 25.4 | 6.5 | 4.0 | 25.7 |
27.5 | 6.7 | 4.1 | 27.5 | 6.8 | 4.1 | 28.0 |
30 | 6.7 | 4.2 | 28.3 | 7.0 | 4.3 | 30.2 |
32.5 | 7.2 | 4.4 | 31.7 | 7.3 | 4.4 | 32.4 |
35 | 7.4 | 4.6 | 34.0 | 7.6 | 4.6 | 34.6 |
37.5 | 7.8 | 4.9 | 37.9 | 7.7 | 4.8 | 37.0 |
40 | 7.9 | 5.0 | 39.3 | 8.9 | 4.9 | 43.7 |
Temperature Rise ΔT | CTRC-EP-M1 | CTRC-EP-M2 | ||
---|---|---|---|---|
[°C] | [10−3/s] | [-] | [10−3/s] | [-] |
5 | 1.02 | 0.9187 | 4.09 | 0.9496 |
7.5 | 6.23 | 0.9094 | 6.61 | 0.9209 |
10 | 3.21 | 0.8037 | 11.36 | 0.9148 |
12.5 | 7.97 | 0.9879 | 10.69 | 0.9853 |
15 | 1.04 | 0.9441 | 11.34 | 0.9190 |
17.5 | 6.64 | 0.9928 | 6.48 | 0.9951 |
20 | 4.98 | 0.9887 | 10.97 | 0.9696 |
22.5 | 10.67 | 0.9744 | 5.29 | 0.9427 |
25 | - | - | 4.30 | 0.9109 |
27.5 | 4.23 | 0.9885 | - | - |
30 | 10.49 | 0.9807 | 6.88 | 0.9803 |
32.5 | - | - | - | - |
35 | 17.11 | 0.8552 | 15.27 | 0.9569 |
37.5 | - | - | 11.79 | 0.9948 |
40 | 4.69 | 0.9758 | 48.05 | 0.9463 |
Temperature Rise ΔT | CTRC-P-M1 | CTRC-P-M2 | ||
---|---|---|---|---|
[°C] | [10−3/s] | [-] | [10−3/s] | [-] |
5 | 11.91 | 0.9924 | 6.24 | 0.9709 |
7.5 | 10.82 | 0.9858 | 9.02 | 0.9135 |
10 | 16.15 | 0.9189 | 5.39 | 0.9175 |
12.5 | 20.46 | 0.9178 | 8.50 | 0.9280 |
15 | 15.00 | 0.9434 | 8.45 | 0.9763 |
17.5 | 7.72 | 0.9391 | 5.69 | 0.9563 |
20 | 8.71 | 0.9703 | 13.27 | 0.9413 |
22.5 | 7.02 | 0.9718 | 14.43 | 0.8821 |
25 | 9.42 | 0.9508 | 8.74 | 0.9898 |
27.5 | 8.79 | 0.9759 | 10.54 | 0.9582 |
30 | 15.98 | 0.9419 | 12.06 | 0.9713 |
32.5 | 12.42 | 0.9581 | 11.31 | 0.9725 |
35 | 9.55 | 0.9884 | 7.11 | 0.9602 |
37.5 | 9.01 | 0.9969 | 9.45 | 0.9765 |
40 | 13.18 | 0.973 | 5.05 | 0.9179 |
Temperature Rise ΔT | ||||
---|---|---|---|---|
CTRC-EP-M1 | CTRC-EP-M2 | CTRC-P-M1 | CTRC-P-M2 | |
[°C] | [-] | |||
5 | 0.9392 | 0.9403 | 0.9555 | 0.9782 |
7.5 | 0.9708 | 0.9323 | 0.9780 | 0.9639 |
10 | 0.9544 | 0.9080 | 0.9594 | 0.9809 |
12.5 | 0.9921 | 0.9515 | 0.9569 | 0.9669 |
15 | 0.9778 | 0.9364 | 0.9510 | 0.9794 |
17.5 | 0.9958 | 0.9963 | 0.9902 | 0.9891 |
20 | 0.9950 | 0.9543 | 0.9913 | 0.9743 |
22.5 | 0.9856 | 0.9876 | 0.9927 | 0.9497 |
25 | - | 0.9195 | 0.9862 | 0.9961 |
27.5 | 0.9945 | - | 0.9958 | 0.9817 |
30 | 0.9084 | 0.9819 | 0.9801 | 0.9903 |
32.5 | - | - | 0.9886 | 0.9904 |
35 | 0.9778 | 0.9804 | 0.9956 | 0.9945 |
37.5 | - | 0.9957 | 0.9988 | 0.9909 |
40 | 0.9661 | 0.7477 | 0.9891 | 0.9552 |
Cooling ΔT | CTRC-EP-M1 | CTRC-EP-M2 | CTRC-P-M1 | CTRC-P-M2 | ||||
---|---|---|---|---|---|---|---|---|
[°C] | [10−3/s] | [-] | [10−3/s] | [-] | [10−3/s] | [-] | [10−3/s] | [-] |
15 | 4.78 | 0.9431 | 5.47 | 0.9899 | 6.24 | 0.9789 | 5.58 | 0.9812 |
Cooling ΔT | ||||
---|---|---|---|---|
CTRC-EP-M1 | CTRC-EP-M2 | CTRC-P-M1 | CTRC-P-M2 | |
[°C] | [-] | |||
15 | 0.9831 | 0.9967 | 0.9822 | 0.9949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlhoff, A.; Raupach, M. Modeling of Electrical Heating and Cooling for Carbon Textile Reinforced Concrete. Materials 2025, 18, 1078. https://doi.org/10.3390/ma18051078
Dahlhoff A, Raupach M. Modeling of Electrical Heating and Cooling for Carbon Textile Reinforced Concrete. Materials. 2025; 18(5):1078. https://doi.org/10.3390/ma18051078
Chicago/Turabian StyleDahlhoff, Annette, and Michael Raupach. 2025. "Modeling of Electrical Heating and Cooling for Carbon Textile Reinforced Concrete" Materials 18, no. 5: 1078. https://doi.org/10.3390/ma18051078
APA StyleDahlhoff, A., & Raupach, M. (2025). Modeling of Electrical Heating and Cooling for Carbon Textile Reinforced Concrete. Materials, 18(5), 1078. https://doi.org/10.3390/ma18051078