Evolution of Microstructure and Mechanical Properties of Ultra-High-Strength Heat-Resistant Bearing Steel During Long-Term Aging at 500 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Evolution
3.2. Tensile Properties
4. Discussion
4.1. The Influence of Aging Time on Microstructural Evolution
4.2. The Influence of Aging Time on Strength
4.3. The Influence of Aging Time on Ductility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomasello, C.M.; Burrrier, H.I.; Knepper, R.A.; Balliett, S.; Maloney, J.L. Progress in the evaluation of CSS-42L™: A high performance bearing alloy. Am. Soc. Mech. Eng. 2002, 1, 375–385. [Google Scholar] [CrossRef]
- Klecka, M.A.; Subhash, G.; Arakere, N.K. Microstructure–Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels. Tribol. Trans. 2013, 56, 1046–1059. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Liu, Z.; Yang, Z. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel. J. Mater. Sci. Technol. 2020, 51, 130–136. [Google Scholar] [CrossRef]
- Perez, M.; Sidoroff, C.; Vincent, A.; Esnouf, C. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes. Acta Mater. 2009, 57, 3170–3181. [Google Scholar] [CrossRef]
- Luo, Z.-J.; Shen, J.-C.; Su, H.; Ding, Y.-H.; Yang, C.-F.; Zhu, X. Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels. J. Iron Steel Res. Int. 2010, 17, 40–48. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, L.; Feng, S.; Li, J.; Wang, F.; Zhang, H. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel. Mater. Sci. Eng. A 2022, 861, 144233. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, T.; Shi, Q.; Wang, N.; Zhang, S.; Yang, K.; Yan, W.; Wang, W. Microstructure evolution and mechanical properties during long-term tempering of a low carbon martensitic stainless bearing steel. J. Mater. Res. Technol. 2023, 25, 297–309. [Google Scholar] [CrossRef]
- Zhang, W.W. Study on the Precipitation Behavior of Laves Phase and Its Effect on Thermal Deformation and Mechanical Properties of Thermo-Span Alloys; University of Science and Technology of China: Hefei, China, 2022. [Google Scholar]
- Zeng, T.; Li, W.; Wang, N.; Wang, W.; Yang, K. Microstructural evolution during tempering and intrinsic strengthening mechanisms in a low carbon martensitic stainless bearing steel. Mater. Sci. Eng. A 2022, 836, 142736. [Google Scholar] [CrossRef]
- GB/T 228-2020; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. GB/T 228.1-2020. State Administration for Market Regulation of the People’s Republic of China: Beijing, China, 2022.
- Ma, H.X.; Li, Y.G. Measurement of size distribution and volume fraction of precipitates in silicon steel. Mater. Sci. Eng. A 2002, 20, 328–331. [Google Scholar] [CrossRef]
- Mao, C.; Liu, C.; Yu, L.; Li, H.; Liu, Y. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures. Mater. Sci. Eng. A 2018, 725, 283–289. [Google Scholar] [CrossRef]
- Zhang, H.; Ponge, D.; Raabe, D. Designing quadplex (four-phase) microstructures in an ultrahigh carbon steel. Mater. Sci. Eng. A 2014, 612, 46–53. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, M.; Dong, Y.; Misra, R.; Du, Y.; Wu, H.; Du, L. On the structure-property relationship in a novel 1000 MPa hot-rolled TRIP steel with strain-assisted ferrite transformation. Mater. Sci. Eng. A 2021, 821, 141594. [Google Scholar] [CrossRef]
- Chen, S.-C.; Wang, Y.-T.; Lin, Y.-C.; Huang, C.-Y.; Yang, J.-R.; Yen, H.-W. Microstructure and mechanical behaviors of GPa-grade TRIP steels enabled by hot-rolling processes. Mater. Sci. Eng. A 2019, 761, 138005. [Google Scholar] [CrossRef]
- Wei, W.; Ke, J.; Liu, Z.; Liu, G.; Liu, Q.; Qian, D.; Hua, L. Understanding the microstructural evolution and fretting wear behaviors of M50 bearing steel heat treated at different temperatures. J. Mater. Res. Technol. 2023, 27, 6661–6671. [Google Scholar] [CrossRef]
- He, X.; Yang, L.X.; Wu, Z.W.; Zhao, K.Y.; Yang, M.S. Effects of cryogenic treatment on M6C carbide in 16Cr14Co12Mo5Ni2 bearing steel. Trans. Mater. Heat Treat. 2019, 40, 96–102. [Google Scholar] [CrossRef]
- Du, N.; Liu, H.; Cao, Y.; Fu, P.; Sun, C.; Liu, H.; Li, D. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel. Mater. Charact. 2021, 174, 111011. [Google Scholar] [CrossRef]
- Li, S.; Zhu, G.; Kang, Y. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel. J. Alloys Compd. 2016, 675, 104–115. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Liu, C.; Subramanian, S. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater. Sci. Eng. A 2012, 539, 271–279. [Google Scholar] [CrossRef]
- Li, Y.; Yan, W.; Cotton, J.D.; Ryan, G.J.; Shen, Y.; Wang, W.; Shan, Y.; Yang, K. A new 1.9GPa maraging stainless steel strengthened by multiple precipitating species. Mater. Des. 2015, 82, 56–63. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, W.; Wu, Y.; Zong, Y. Characterization of microstructural evolution with pre-strain in BG801 bearing steel: Grain, carbides, retained austenite and martensite. Vacuum 2023, 216, 112354. [Google Scholar] [CrossRef]
- Liu, W.; Cao, Y.; Guo, Y.; Xu, B.; Sun, M.; Li, D. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel. Mater. Charact. 2020, 169, 110636. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, C.; Li, Z.; Liu, T.; Zhi, M.; Zhu, J.; Sun, J. Study on the strengthening phase in a ultra-high strength stainless gear steel. Aeronaut. Mater. 2003, 23, 6. [Google Scholar]
- Li, S.; Zhao, K.; Wang, K.; Yang, M. Microstructural evolution and thermal stability after aging of a cobalt-containing martensitic bearing steel. Mater. Charact. 2017, 124, 154–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, D.; Qi, X.; Jiang, Z. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel. J. Mater. Sci. Technol. 2019, 35, 1240–1249. [Google Scholar] [CrossRef]
- Li, S.; Xiao, M.; Ye, G.; Zhao, K.; Yang, M. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging. Mater. Sci. Eng. A 2018, 732, 167–177. [Google Scholar] [CrossRef]
- Semba, H.; Abe, F. Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high concentration of boron. Energy Mater. 2013, 1, 238–244. [Google Scholar] [CrossRef]
- Ribárik, G.; Ungár, T.; Gubicza, J. MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 2010, 34, 669–676. [Google Scholar] [CrossRef]
- Liu, T.; Cao, Z.; Wang, H.; Wu, G.; Jin, J.; Cao, W. A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations. Scr. Mater. 2020, 178, 285–289. [Google Scholar] [CrossRef]
- Gu, J.; Li, J.; Chang, R.; Li, L. Comprehensive effect of nitrogen on Cr-Mo-V hot-working die steel with enhanced strength and toughness. Mater. Sci. Eng. A 2019, 766, 138386. [Google Scholar] [CrossRef]
- Shi, R.; Wang, Z.; Qiao, L.; Pang, X. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel. J. Mater. Sci. Technol. 2019, 35, 1940–1950. [Google Scholar] [CrossRef]
- Niu, M.C.; Zhou, G.; Wang, W.; Shahzad, M.B.; Shan, Y.; Yang, K. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Mater. 2019, 179, 296–307. [Google Scholar] [CrossRef]
- Ning, A.G. Research on the Integrated Strengthening Mechanism of Nanoscale Precipitates and Steel in Hot Work Die Steel; University of Science and Technology: Beijing, China, 2015. [Google Scholar]
- Yu, D.G.; Tan, Y.B. Organizational Strength of Steel; Shanghai Science and Technology Publishing: Shanghai, China, 1983. [Google Scholar]
- Gladman, T. Grain Refinement in Multiple Microalloyed Steels. In HSLA Steels: Processing, Properties and Application; The Minerals, Metals and Materials Society: Pittsburgh, PA, USA, 1992; pp. 3–14. [Google Scholar]
- Wang, J.-S.; Mulholland, M.D.; Olson, G.; Seidman, D. Prediction of the yield strength of a secondary-hardening steel. Acta Mater. 2013, 61, 4939–4952. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, G.; Ma, X.; Wang, L.; Zhang, X. Relationship between microstructure and mechanical properties of M50 ultra-high strength steel via quenching-partitioning-tempering process. Mater. Charact. 2018, 146, 258–266. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Yu, X.; Wang, S.; Xia, Y.; Liu, L.; Liu, J. Effect of deep tempering on microstructure and hardness of carburized M50NiL steel. J. Mater. Res. Technol. 2021, 14, 1080–1088. [Google Scholar] [CrossRef]
- Won, Y.-J.; Kwon, Y.-J.; You, J.-S.; Park, S.-S.; Cho, K.-S. Role of W addition in reducing heat checking and enhancing the mechanical properties of hot work tool steel. J. Mater. Res. Technol. 2023, 24, 3413–3422. [Google Scholar] [CrossRef]
Elemental | C | Cr | Ni | Mo | Co | W | V | Nb |
---|---|---|---|---|---|---|---|---|
Content | 0.18 | 10 | 4 | 5 | 12.68 | 0.53 | 0.62 | 0.029 |
Time (h) | Volume Fraction of Austenite (vol. %) | Dislocation Density (1011/cm2) |
---|---|---|
0 h | 0.54 | 6.63 |
50 h | 0.55 | 5.15 |
100 h | 0.56 | 4.84 |
Time (h) | rF (μm) | rf (μm) | Crack Propagation Rate (×10−3 μm/s) |
---|---|---|---|
0 h | 1658 | 1079 | 34.3 |
10 h | 1629 | 1286 | 46.8 |
20 h | 1714 | 1314 | 48.9 |
50 h | 1595 | 1243 | 37.8 |
80 h | 1697 | 1303 | 54.1 |
100 h | 1714 | 1257 | 42.8 |
Time (h) | f (%) | r (nm) |
---|---|---|
0 h | 0.24 | 12.5 |
50 h | 1.05 | 24.1 |
100 h | 1.12 | 35.6 |
Time/h | σ0/MPa | σss/MPa | σGB/MPa | σdis/MPa | σppt/MPa | σ/MPa |
---|---|---|---|---|---|---|
0 h | 50 | 246 | 268 | 91 | 972 | 1627 |
50 h | 50 | 206 | 241 | 81 | 1311 | 1889 |
100 h | 50 | 169 | 217 | 78 | 1357 | 1871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Chi, H.; Zhou, J.; Gu, J.; Ma, D.; Dong, L. Evolution of Microstructure and Mechanical Properties of Ultra-High-Strength Heat-Resistant Bearing Steel During Long-Term Aging at 500 °C. Materials 2025, 18, 639. https://doi.org/10.3390/ma18030639
Guo C, Chi H, Zhou J, Gu J, Ma D, Dong L. Evolution of Microstructure and Mechanical Properties of Ultra-High-Strength Heat-Resistant Bearing Steel During Long-Term Aging at 500 °C. Materials. 2025; 18(3):639. https://doi.org/10.3390/ma18030639
Chicago/Turabian StyleGuo, Chuncheng, Hongxiao Chi, Jian Zhou, Jinbo Gu, Dangshen Ma, and Lili Dong. 2025. "Evolution of Microstructure and Mechanical Properties of Ultra-High-Strength Heat-Resistant Bearing Steel During Long-Term Aging at 500 °C" Materials 18, no. 3: 639. https://doi.org/10.3390/ma18030639
APA StyleGuo, C., Chi, H., Zhou, J., Gu, J., Ma, D., & Dong, L. (2025). Evolution of Microstructure and Mechanical Properties of Ultra-High-Strength Heat-Resistant Bearing Steel During Long-Term Aging at 500 °C. Materials, 18(3), 639. https://doi.org/10.3390/ma18030639