A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction
Abstract
:1. Introduction
2. Computational Method and Materials
3. Results and Discussion
3.1. Surface Energy and Band Structures of Bismuthene
3.2. Free Energy Analysis of Intermediates in Bismuthene for RR
- *OCO → *OCHO;
- *OCO → *COOH;
- *H → H2.
3.3. Calculation and Analysis of Energy Band of Intermediates in Bismuthene for RR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E. The birth of topological insulators. Nature 2010, 464, 194–198. [Google Scholar] [CrossRef]
- Schaibley, J.R.; Yu, H.Y.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X.D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Chia, X.Y.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921. [Google Scholar] [CrossRef]
- Bellani, S.; Bartolotta, A.; Agresti, A.; Calogero, G.; Grancini, G.; Di Carlo, A.; Kymakis, E.; Bonaccorso, F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965. [Google Scholar] [CrossRef]
- Fu, X.B.; Pedersen, J.B.; Zhou, Y.Y.; Saccoccio, M.; Li, S.F.; Salinas, R.; Li, K.T.; Andersen, S.Z.; Xu, A.N.; Deissler, N.H.; et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707–712. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhao, J.X.; Cai, Q.H. Pyrrolic-nitrogen doped graphene: A metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: A computational study. Phys. Chem. Chem. Phys. 2016, 18, 5491–5498. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.J.; Parkin, S.S.P.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef]
- Yeom, H.W.; Jin, K.H.; Jhi, S.H. Topological fate of edge states of single Bi bilayer on Bi(111). Phys. Rev. B 2016, 93, 075435. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, Y.; Cui, H.; Zhou, Z. Catalyst Design for Electrochemical Reduction of CO2 to Multicarbon Products. Small Methods 2021, 5, 2100736. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 2020, 35, 90–105. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Zhou, Y.; Tan, Y.; Li, H.; Fu, J.; Liu, M. Electrocatalytic CO2 Reduction to C2+ Products in Flow Cells. Adv. Mater. 2024, 36, 2303902. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Weng, Z.; Wu, Z.; Zhong, Y.; Wu, Y.; Fang, J.; Wang, H. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519–28526. [Google Scholar] [CrossRef]
- Guo, J.; Zhi, X.; Wang, D.; Qu, L.; Zavabeti, A.; Fan, Q.; Zhang, Y.; Butson, J.D.; Yang, J.; Wu, C.; et al. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO2 Reduction. Small 2024, 20, 2401777. [Google Scholar] [CrossRef]
- Cho, W.S.; Hong, D.M.; Dong, W.J.; Lee, T.H.; Yoo, C.J.; Lee, D.; Jang, H.W.; Lee, J.-L. Porously Reduced 2-Dimensional BiOCO Petals for Strain-Mediated Electrochemical CO Reduction to HCOOH. Energy Environ. Mater. 2024, 7, e12490. [Google Scholar] [CrossRef]
- Kaiyue, H.; Jiayu, T.; Zhifu, Z.; Daming, Z.; Xiangjiu, G. Direct Z-scheme photocatalytic systems based on vdW heterostructures for water splitting and CO2 reduction: Fundamentals and recent advances. Microstructures 2024, 4, 2024021. [Google Scholar] [CrossRef]
- Masoumi, Z.; Tayebi, M.; Tayebi, M.; Masoumi Lari, S.A.; Sewwandi, N.; Seo, B.; Lim, C.-S.; Kim, H.-G.; Kyung, D. Electrocatalytic Reactions for Converting CO2 to Value-Added Products: Recent Progress and Emerging Trends. Int. J. Mol. Sci. 2023, 24, 9952. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Cheah, M.H.; Lomoth, R.; Hammarström, L. Direct Detection of Key Intermediates during the Product Release in Rhenium Bipyridine-Catalyzed CO2 Reduction Reaction. ACS Catal. 2024, 14, 16324–16334. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.; Roh, C.W.; Whang, H.S.; Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 2019, 31, 244–250. [Google Scholar] [CrossRef]
- Huang, Z.; Grim, R.G.; Schaidle, J.A.; Tao, L. The economic outlook for converting CO2 and electrons to molecules. Energy Environ. Sci. 2021, 14, 3664–3678. [Google Scholar] [CrossRef]
- Cao, B.; Li, F.-Z.; Gu, J. Designing Cu-Based Tandem Catalysts for CO2 Electroreduction Based on Mass Transport of CO Intermediate. ACS Catal. 2022, 12, 9735–9752. [Google Scholar] [CrossRef]
- Sliwa, M.; Zhang, H.; Gao, J.X.; Stephens, B.O.; Patera, A.J.; Raciti, D.; Hanrahan, P.D.; Warecki, Z.A.; Foley, D.L.; Livi, K.J.; et al. Selective CO2 Reduction Electrocatalysis Using AgCu Nanoalloys Prepared by a “Host-Guest” Method. Nano Lett. 2024, 24, 13911–13918. [Google Scholar] [CrossRef]
- Sun, H.H.; Wang, M.X.; Zhu, F.F.; Wang, G.Y.; Ma, H.Y.; Xu, Z.A.; Liao, Q.; Lu, Y.H.; Gao, C.L.; Li, Y.Y.; et al. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film. Nano Lett. 2017, 17, 3035–3039. [Google Scholar] [CrossRef]
- Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.H.; Li, Y.F.; Li, Y.G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320. [Google Scholar] [CrossRef]
- Yang, H.; Han, N.; Deng, J.; Wu, J.H.; Wang, Y.; Hu, Y.P.; Ding, P.; Li, Y.F.; Li, Y.G.; Lu, J. Selective CO2 Reduction on 2D Mesoporous Bi Nanosheets. Adv. Energy Mater. 2018, 8, 1801536. [Google Scholar] [CrossRef]
- Cao, C.S.; Ma, D.D.; Gu, J.F.; Xie, X.Y.; Zeng, G.; Li, X.F.; Han, S.G.; Zhu, Q.L.; Wu, X.T.; Xu, Q. Metal-Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. Angew. Chem. Int. Ed. 2020, 59, 15014–15020. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, X.; Mao, X.N.; Xu, J.; Han, N.; Yang, H.; Pan, B.B.; Li, Y.S.; Wang, L.; Li, Y.G. Large-Area Vertically Aligned Bismuthene Nanosheet Arrays from Galvanic Replacement Reaction for Efficient Electrochemical CO2 Conversion. Adv. Mater. 2021, 33, 2100910. [Google Scholar] [CrossRef]
- Li, Y.X.; Hui, D.P.; Sun, Y.Q.; Wang, Y.; Wu, Z.J.; Wang, C.Y.; Zhao, J.C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123. [Google Scholar] [CrossRef]
- Ma, W.X.; Bu, J.; Liu, Z.P.; Yan, C.; Yao, Y.; Chang, N.H.; Zhang, H.P.; Wang, T.; Zhang, J. Monoclinic Scheelite Bismuth Vanadate Derived Bismuthene Nanosheets with Rapid Kinetics for Electrochemically Reducing Carbon Dioxide to Formate. Adv. Funct. Mater. 2021, 31, 2006704. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.L.; Qu, Y.T.; Wang, X.; Huo, H.; Fan, Q.K.; Wang, J.; Yang, L.M.; Wu, Y.E. Bi-Based Metal-Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction. Adv. Energy Mater. 2020, 10, 2001709. [Google Scholar] [CrossRef]
- Yang, F.; Elnabawy, A.O.; Schimmenti, R.; Song, P.; Wang, J.W.; Peng, Z.Q.; Yao, S.; Deng, R.P.; Song, S.Y.; Lin, Y.; et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088. [Google Scholar] [CrossRef]
- Siinor, L.; Lust, K.; Lust, E. Impedance study of adsorption of iodide ions at Bi(001) electrode from the aqueous solutions with constant ionic strength. J. Electroanal. Chem. 2007, 601, 39–46. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Lan, M.; Shao, T.-N.; Li, G.-Q.; Zhang, Y.; Huang, C.-Z.; Xiong, Z.-H.; Ma, X.-C.; Jia, J.-F.; Xue, Q.-K. STM study of a rubrene monolayer on Bi(001): Structural modulations. Phys. Rev. B 2011, 83, 235433. [Google Scholar] [CrossRef]
- Bychkov, Y.A.; Rashba, E.I. Oscillatory Effects and the Magnetic-Susceptibility of Carriers in Inversion-Layers. J. Phys. C Solid State Phys. 1984, 17, 6039–6045. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Klimes, J.; Bowler, D.R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201. [Google Scholar] [CrossRef] [PubMed]
- Klimes, J.; Bowler, D.R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131. [Google Scholar] [CrossRef]
- Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.L.; Ling, Y.Z.; Li, F.W.; Bond, A.M.; Zhang, J. Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO2 Reduction Performance. Angew. Chem. Int. Ed. 2018, 57, 13283–13287. [Google Scholar] [CrossRef]
- Available online: https://webbook.nist.gov/chemistry/ (accessed on 1 January 2023).
- Xu, A.; Wei, D.; Chen, X.; Yang, T.; Huang, Y.; He, H.; Xu, J. In situ transformation of bismuth-containing precursors into ultrathin bismuth nanosheets for enhanced electrochemical CO2 reduction. Chem. Eng. J. 2023, 452, 139227. [Google Scholar] [CrossRef]
Absorb Structure | G/eV | G/eV (U = 0 V) | G/eV (U = 0.1655 V) |
---|---|---|---|
Bi-SOC-001-1-Layer | |||
slab | −167.247 | 0.000 | 0.000 |
*OCO | −166.833 | 0.414 | 0.414 |
*OCOH | −165.837 | 1.410 | 1.244 |
*slab | −166.916 | 0.331 | 0.000 |
*COOH | −165.235 | 2.012 | 1.846 |
Bi-nonSOC-001-1-Layer | |||
slab | −148.332 | 0.000 | 0.000 |
*OCO | −147.447 | 0.885 | 0.885 |
*OCOH | −146.727 | 1.605 | 1.439 |
*slab | −148.001 | 0.331 | 0.000 |
*COOH | −146.359 | 1.973 | 1.851 |
Bi-SOC-012-1-Layer | |||
slab | −102.207 | 0.000 | 0.000 |
*OCO | −101.553 | 0.654 | 0.654 |
*OCOH | −100.983 | 1.224 | 1.059 |
*slab | −101.876 | 0.331 | 0.000 |
*COOH | −100.666 | 1.541 | 1.376 |
Absorb Structure | G/eV | G/eV |
---|---|---|
Bi-SOC-001-1-Layer | ||
slab | −144.041 | 0.000 |
*H | −142.770 | 1.272 |
*slab | −144.041 | 0.000 |
Bi-nonSOC-001-1-Layer | ||
slab | −125.126 | 0.000 |
*H | −123.828 | 1.298 |
*slab | −125.126 | 0.000 |
Bi-SOC-012-1-Layer | ||
slab | −79.001 | 0.000 |
*H | −78.149 | 0.852 |
*slab | −79.001 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-T.; Yue, Q.; Wang, C.; Xu, Y.; Zhou, C. A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction. Materials 2025, 18, 594. https://doi.org/10.3390/ma18030594
Wang C-T, Yue Q, Wang C, Xu Y, Zhou C. A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction. Materials. 2025; 18(3):594. https://doi.org/10.3390/ma18030594
Chicago/Turabian StyleWang, Chang-Tian, Qinchi Yue, Changhao Wang, Yuanji Xu, and Chang Zhou. 2025. "A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction" Materials 18, no. 3: 594. https://doi.org/10.3390/ma18030594
APA StyleWang, C.-T., Yue, Q., Wang, C., Xu, Y., & Zhou, C. (2025). A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction. Materials, 18(3), 594. https://doi.org/10.3390/ma18030594