Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade
Abstract
1. Introduction
2. Materials and Experimental Procedure
3. Results and Analysis
3.1. Microstructure Analysis
3.1.1. Initial State After Solution Annealing
3.1.2. Study of Microstructures After Sample Processing at Ambient Temperatures
- d [μm]—grain diameter;
- ε [%]—relative thickness reduction.
3.2. Isothermal DSC Analysis and Analysis of Dislocation Density
- (i)
- According to [62,63], the first exothermic peak is defined as the reverse transformation of α′-martensite to γ-austenite, which lies within the temperature interval TSA, α′ → γ <467;673> [°C]. From the real DSC, the diagram shows that this transformation was observed at the temperature interval TSA, α′ → γ <398;601> [°C].
- (ii)
- The second exothermic peak resulted from the DSC measurement lying in the temperature interval TM23C6<759;843> [°C] and, according to the authors of [64,65,66], is related to the formation of M23C6 carbide. The carbon solubility equilibrium state in the M23C6 carbide of AISI 316 austenitic stainless steel was described by the authors of [67] by the following formula:
- -
- Deformation 10%: TA10_peak1 ∈ <195;330> [°C] with stored energy:∆HA10_peak1 = 1.23 J/g and calculated dislocation density: ρA10_peak1 = 1.74 × 10+15 m−2.
- -
- Deformation 30%: TA30_peak1 ∈ <164;376> [°C] with stored energy:∆HA30_peak1 = 21.28 J/g and calculated dislocation density: ρA30_peak1 = 6.8 × 10+15 m−2.
- -
- Deformation 50%: TA50_peak1 ∈ <207;339> [°C] with stored energy:∆HA50_peak1 = 1.469J/g and calculated dislocation density: ρA50_peak1 = 5.17 × 10+15 m−2.
- c2 [-]—numerical factor;
- G = 75 [GPa]—shear modulus;
- b = 0.25597 [nm]—Burger’s vector.
- C0 [-]—constant.
- RP0.2 [MPa]—the offset yield strength;
- ε [%]—thickness rolling reduction.
- R0 [MPa]—yield stress in single crystal (friction stress);
- ky [MPa.μm−1/2]—Hall–Petch coefficient describing the grain boundary strengthening;
- d−1/2 [μm−1/2]—the inverse square root of the grain size diameter.
3.3. Mechanisms of Plastic Deformation
- a = 0.3619 [nm]—is the lattice parameter;
- d [nm]—diameter of grain size.
3.4. Strengthening Contributions to the Yield Strength
- ∆ RP0.2_PN [MPa]—strengthening contribution from Peierls–Nabarro stress;
- ∆ RP0.2_IS [MPa]—strengthening contribution of the solid solution from interstitial elements;
- ∆ RP0.2_SE [MPa]—strengthening contribution of the solid solution from substitution elements;
- ∆ RP0.2_GB [MPa]—strengthening contribution from grain boundaries (Hall–Petch);
- ∆ RP0.2_DS [MPa]—strengthening contribution from dislocation;
- ∆ RP0.2_DT [MPa]—strengthening contribution from deformation twinning;
- ∆ RP0.2_PR [MPa]—strengthening contribution from precipitates.
- (a)
- (b)
- The author of [81] described the strengthening contribution of the solid solution by interstitial elements and proposed the following formula:∆ RP0.2_IS = 354.C + 493.N = 354.0.06 + 493.0.13 = 78 MPa
- (c)
- The strengthening contribution of the solid solution by substitution elements can be calculated according to the following formulas:
- (d)
- (e)
- The strengthening contribution from grain boundaries is described by the Hall–Petch formula as follows:
- -
- For the diameter of grain size d = 64 μm:
- -
- For the diameter of grain size d = 214 μm:
- (f)
- The strengthening contribution from dislocation density
- α [-]—dislocation strengthening coefficient α ∈ <0.23; 0.3> [91];
- G = 75 [GPa]—shear modulus;
- b = 0.2559 [nm]—Burgers vector of perfect dislocation;
- ρ [m−2]—dislocation density.
- (g)
- The strengthening contribution from deformation twinning
- ky_DT [MPa.μm1/2]—twin boundary strengthening coefficient.
- (h)
- The strengthening contribution from precipitates
- (i)
- Contributions independent from plastic deformation conditions—passive options (∆RP0.2_PN, ∆RP0.2_IS, ∆RP0.2_SE);
- (ii)
- Contributions dependent on plastic deformation conditions—active options (∆RP0.2_GB, ∆RP0.2_DS, ∆RP0.2_DT).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Pisón, P.; Rodríguez-Martínez, J.A.; García-Tabarés, E.; Avilés-Santillana, I.; Sgobba, S. Flow and Fracture of Austenitic Stainless Steels at Cryogenic Temperatures. Eng. Fract. Mech. 2021, 258, 108042. [Google Scholar] [CrossRef]
- ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys—ASM International. Available online: https://www.asminternational.org/asm-handbook-volume-1-properties-and-selection-irons-steels-and-high-performance-alloys/results/-/journal_content/56/06181G/PUBLICATION (accessed on 27 November 2024).
- Singh, R.; Agrahari, S.; Yadav, S.D.; Kumar, A. Microstructural Evolution and Mechanical Properties of 316 Austenitic Stainless Steel by CGP. Mater. Sci. Eng. A 2021, 812, 141105. [Google Scholar] [CrossRef]
- Chen, S.; Sun, L.; Li, W. Effect of Chloride Threshold on Pitting Behavior of 316LN Stainless Steel in Sour Water Solution by Electrochemical Analysis. Mater. Corros. 2023, 74, 244–254. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Zhou, C.; Tan, H. Effect of Carbonation on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution. Constr. Build. Mater. 2017, 130, 193–201. [Google Scholar] [CrossRef]
- Sonekar, M.M.; Rathod, W.S. An Experimental Investigation on Tribologial Behavior of Bio-Implant Material (SS-316 l & Ti6Al4V) for Orthopaedic Applications. Mater. Today Proc. 2019, 19, 444–447. [Google Scholar] [CrossRef]
- Xu, D.M.; Li, G.Q.; Wan, X.L.; Xiong, R.L.; Xu, G.; Wu, K.M.; Somani, M.C.; Misra, R.D.K. Deformation Behavior of High Yield Strength—High Ductility Ultrafine-Grained 316LN Austenitic Stainless Steel. Mater. Sci. Eng. A 2017, 688, 407–415. [Google Scholar] [CrossRef]
- Czarkowski, P.; Krawczynska, A.T.; Slesinski, R.; Brynk, T.; Budniak, J.; Lewandowska, M.; Kurzydlowski, K.J. Low Temperature Mechanical Properties of 316L Type Stainless Steel after Hydrostatic Extrusion. Fusion Eng. Des. 2011, 86, 2517–2521. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Huang, R.; Li, L. Influence of Pre-Strain on Cryogenic Tensile Properties of 316LN Austenitic Stainless Steel. Cryogenics 2020, 106, 103058. [Google Scholar] [CrossRef]
- Kvačkaj, T.; Bidulský, R.; Kováčová, A.; Ileninová, J.; Bidulská, J. Analysis of Metallic Materials for Iter with the Emphasis on Copper Alloys. Acta Metall. Slovaca 2014, 20, 397–404. [Google Scholar] [CrossRef]
- Ishio, K.; Nakajima, H. Effects of Nitrogen on the Mechanical Propeties of 316LN Stainless Steels. Tetsu-Hagane 2006, 92, 90–96. [Google Scholar] [CrossRef]
- Das, A. Cyclic Plasticity Induced Transformation of Austenitic Stainless Steels. Mater. Charact. 2019, 149, 1–25. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2021, 92, 2000242. [Google Scholar] [CrossRef]
- Umezawa, O. Review of the Mechanical Properties of High-Strength Alloys at Cryogenic Temperatures. Mater. Perform. Charact. 2021, 10, 3–15. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, W.; Ma, B. Effect of Nitrogen Content on Mechanical Properties of 316L(N) Austenitic Stainless Steel. Mater. Sci. Eng. A 2023, 884, 145549. [Google Scholar] [CrossRef]
- Cui, L.; Jiang, S.; Xu, J.; Peng, R.L.; Mousavian, R.T.; Moverare, J. Revealing Relationships between Microstructure and Hardening Nature of Additively Manufactured 316L Stainless Steel. Mater. Des. 2021, 198, 109385. [Google Scholar] [CrossRef]
- Sakurai, T.; Umezawa, O. High-Strength and High-Toughness Austenitic Stainless Steels Based on Type 316LN at 4.2 K. Cryogenics 2023, 136, 103762. [Google Scholar] [CrossRef]
- Simon, N.J.; Reed, R.P. Strength and Toughness of Aisi 304 and 316 at 4 K. J. Nucl. Mater. 1986, 141–143, 44–48. [Google Scholar] [CrossRef]
- Taweejun, N.; Kanchanomai, C. Effects of Carbon and Nitrogen on the Microstructure and Mechanical Properties of Carbonitrided Low-Carbon Steel. J. Mater. Eng. Perform. 2015, 24, 4853–4862. [Google Scholar] [CrossRef]
- Sakurai, T.; Iguchi, M.; Nakahira, M. Tensile Property Evaluation of Cryogenic Structural Materials for the ITER TF Coil. Teion Kogaku 2019, 54, 459–466. [Google Scholar] [CrossRef]
- Kvackaj, T.; Bidulská, J.; Bidulský, R. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes. Materials 2021, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Endoh, K.; Ii, S.; Kimura, Y.; Sasaki, T.; Goto, S.; Yokota, T.; Ohmura, T. Effects of Grain Boundary Geometry and Boron Addition on the Local Mechanical Behavior of Interstitial-Free (IF) Steels. Mater. Trans. 2021, 62, 1479–1488. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, H.; Pan, S.; Xu, B.; Liu, S.; Sun, M. Effect of Boron Addition on the Microstructure and Cryogenic Mechanical Properties of N50 Stainless Steel after Aging Treatment. Mater. Sci. Eng. A 2023, 881, 145372. [Google Scholar] [CrossRef]
- Behjati, P.; Kermanpur, A.; Najafizadeh, A.; Samaei Baghbadorani, H.; Karjalainen, L.P.; Jung, J.G.; Lee, Y.K. Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 6317–6328. [Google Scholar] [CrossRef]
- Qiu, C.; Kindi, M.A.; Aladawi, A.S.; Hatmi, I.A. A Comprehensive Study on Microstructure and Tensile Behaviour of a Selectively Laser Melted Stainless Steel. Sci. Rep. 2018, 8, 7785. [Google Scholar] [CrossRef] [PubMed]
- Kvackaj, T.; Bidulska, J. From Micro to Nano Scale Structure by Plastic Deformations. Mater. Sci. Forum 2014, 783–786, 842–847. [Google Scholar] [CrossRef]
- Kvackaj, T.; Kovacova, A.; Kocisko, R.; Bidulska, J.; Lityńska–Dobrzyńska, L.; Jenei, P.; Gubicza, J. Microstructure Evolution and Mechanical Performance of Copper Processed by Equal Channel Angular Rolling. Mater. Charact. 2017, 134, 246–252. [Google Scholar] [CrossRef]
- Šimčák, D.; Kvačkaj, T.; Kočiško, R.; Bidulský, R.; Kepič, J.; Puchý, V. Evaluation of High Purity Aluminium after Asymmetric Rolling at Ambient and Cryogenic Temperatures. Acta Metall. Slovaca 2017, 23, 99–104. [Google Scholar] [CrossRef]
- Kováčová, A.; Kvačkaj, T.; Bidulský, R.; Bidulská, J.; Kočiško, R.; Dutkiewicz, J.; Lityńska-Dobrzyńska, L. Investigation of the Ultrafine-Grained Structure Formation under Different Strain Rates. Arch. Metall. Mater. 2017, 62, 851–856. [Google Scholar] [CrossRef]
- Smith, T.R.; Sugar, J.D.; San Marchi, C.; Schoenung, J.M. Strengthening Mechanisms in Directed Energy Deposited Austenitic Stainless Steel. Acta Mater. 2019, 164, 728–740. [Google Scholar] [CrossRef]
- Choudhary, B.K.; Christopher, J. Tensile Flow and Work Hardening Behaviour of Type 316L(N) Austenitic Stainless Steel in the Framework of One-Internal-Variableand Two-Internal-Variable Approaches. Mater. Sci. Eng. A 2015, 636, 269–278. [Google Scholar] [CrossRef]
- 1.4910 (AISI 316 LN), S31653|Datasheet|METALCOR. Available online: https://www.metalcor.de/en/datenblatt/68/ (accessed on 27 November 2024).
- Austenitic Stainless Steel: Definition, Composition, Properties, Grades, Applications and More. Available online: https://steelprogroup.com/stainless-steel/type/austenitic/#elementor-toc__heading-anchor-0 (accessed on 8 August 2024).
- ITER—The Way to New Energy. Available online: https://www.iter.org/ (accessed on 27 November 2024).
- Challa, V.S.A.; Wan, X.L.; Somani, M.C.; Karjalainen, L.P.; Misra, R.D.K. Strain Hardening Behavior of Phase Reversion-Induced Nanograined/Ultrafine-Grained (NG/UFG) Austenitic Stainless Steel and Relationship with Grain Size and Deformation Mechanism. Mater. Sci. Eng. A 2014, 613, 60–70. [Google Scholar] [CrossRef]
- Dong, F.Y.; Zhang, P.; Pang, J.C.; Chen, D.M.; Yang, K.; Zhang, Z.F. Optimizing Strength and Ductility of Austenitic Stainless Steels through Equal-Channel Angular Pressing and Adding Nitrogen Element. Mater. Sci. Eng. A 2013, 587, 185–191. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Rui, W.; Li, J.; Huang, Z.; Sui, F. Deformation Mechanisms of 316L Austenitic Stainless Steel Tubes under Equal Channel Angular Pressing. J. Mater. Eng. Perform. 2020, 29, 1253–1261. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Q.; Liu, Z.; Zeng, S.; Shi, Q.; Peng, J.; Li, Y. Microstructural Evolution, Mechanical Properties and Tribological Behavior of SiC Reinforced 316L Matrix Composites Fabricated by Additive Manufacturing. J. Mater. Res. Technol. 2024, 30, 1889–1899. [Google Scholar] [CrossRef]
- Gubicza, J.; El-Tahawy, M.; Huang, Y.; Choi, H.; Choe, H.; Lábár, J.L.; Langdon, T.G. Microstructure, Phase Composition and Hardness Evolution in 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2016, 657, 215–223. [Google Scholar] [CrossRef]
- Üçok, I.; Ando, T.; Grant, N.J. Property Enhancement in Type 316L Stainless Steel by Spray Forming. Mater. Sci. Eng. A 1991, 133, 284–287. [Google Scholar] [CrossRef]
- Xiong, Y.; He, T.; Wang, J.; Lu, Y.; Chen, L.; Ren, F.; Liu, Y.; Volinsky, A.A. Cryorolling Effect on Microstructure and Mechanical Properties of Fe–25Cr–20Ni Austenitic Stainless Steel. Mater. Des. 2015, 88, 398–405. [Google Scholar] [CrossRef]
- Roy, B.; Kumar, R.; Das, J. Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel. Mater. Sci. Eng. A 2015, 631, 241–247. [Google Scholar] [CrossRef]
- Xiong, Y.; Yue, Y.; Lu, Y.; He, T.; Fan, M.; Ren, F.; Cao, W. Cryorolling Impacts on Microstructure and Mechanical Properties of AISI 316 LN Austenitic Stainless Steel. Mater. Sci. Eng. A 2018, 709, 270–276. [Google Scholar] [CrossRef]
- Vargas, B.R.R.; Albini, L.; Tiracorrendo, G.; Massi, R.; Stornelli, G.; Di Schino, A. Effect of Ultrafast Heating on AISI 304 Austenitic Stainless Steel. Acta Metall. Slovaca 2023, 29, 104–107. [Google Scholar] [CrossRef]
- Kvackaj, T.; Rozsypalova, A.; Kocisko, R.; Bidulska, J.; Petrousek, P.; Vlado, M.; Pokorny, I.; Sas, J.; Weiss, K.P.; Duchek, M.; et al. Influence of Processing Conditions on Properties of AISI 316LN Steel Grade. J. Mater. Eng. Perform. 2020, 29, 1509–1514. [Google Scholar] [CrossRef]
- Fedoriková, A.; Petroušek, P.; Kvačkaj, T.; Kočiško, R.; Zemko, M. Development of Mechanical Properties of Stainless Steel 316LN-IG after Cryo-Plastic Deformation. Materials 2023, 16, 6473. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hultman, L.; Holmström, E.; Antonsson, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking Fault Energies in Austenitic Stainless Steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Shang, S.; Zhang, A.; Xiong, S.; Liu, Z.K.; Liu, F. Insights into Plastic Deformation Mechanisms of Austenitic Steels by Coupling Generalized Stacking Fault Energy and Semi-Discrete Variational Peierls-Nabarro Model. Prog. Nat. Sci. Mater. Int. 2023, 33, 83–91. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Hu, Q.M.; Johansson, B.; Kwon, S.K.; Grehk, M.; Johnsson, J.Y.; Vitos, L. Generalized Stacking Fault Energy of γ-Fe. Philos. Mag. 2016, 96, 524–541. [Google Scholar] [CrossRef]
- Abbasi, A.; Dick, A.; Hickel, T.; Neugebauer, J. First-Principles Investigation of the Effect of Carbon on the Stacking Fault Energy of Fe–C Alloys. Acta Mater. 2011, 59, 3041–3048. [Google Scholar] [CrossRef]
- Kim, J.K.; De Cooman, B.C. Stacking Fault Energy and Deformation Mechanisms in Fe-XMn-0.6C-YAl TWIP Steel. Mater. Sci. Eng. A 2016, 676, 216–231. [Google Scholar] [CrossRef]
- Ueno, H.; Kakihata, K.; Kaneko, Y.; Hashimoto, S.; Vinogradov, A. Nanostructurization Assisted by Twinning during Equal Channel Angular Pressing of Metastable 316L Stainless Steel. J. Mater. Sci. 2011, 46, 4276–4283. [Google Scholar] [CrossRef]
- Sato, A.; Soma, K.; Mori, T. Hardening Due to Pre-Existing ϵ-Martensite in an Fe-30Mn-1Si Alloy Single Crystal. Acta Metall. 1982, 30, 1901–1907. [Google Scholar] [CrossRef]
- Seetharaman, V. Deformation and Martensitic Transformation. Bull. Mater. Sci. 1984, 6, 703–716. [Google Scholar] [CrossRef]
- Manjanna, J.; Kobayashi, S.; Kamada, Y.; Takahashi, S.; Kikuchi, H. Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at RT. J. Mater. Sci. 2008, 43, 2659–2665. [Google Scholar] [CrossRef]
- Ojima, M.; Adachi, Y.; Tomota, Y.; Katada, Y.; Kaneko, Y.; Kuroda, K.; Saka, H. Weak Beam TEM Study on Stacking Fault Energy of High Nitrogen Steels. Steel Res. Int. 2009, 80, 477–481. [Google Scholar] [CrossRef]
- Brofman, P.J.; Ansell, G.S. On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels. Metall. Trans. A 1978, 9, 879–880. [Google Scholar] [CrossRef]
- Meric de Bellefon, G.; van Duysen, J.C.; Sridharan, K. Composition-Dependence of Stacking Fault Energy in Austenitic Stainless Steels through Linear Regression with Random Intercepts. J. Nucl. Mater. 2017, 492, 227–230. [Google Scholar] [CrossRef]
- Rhodes, C.G.; Thompson, A.W. The Composition Dependence of Stacking Fault Energy in Austenitic Stainless Steels. Metall. Trans. A 1977, 8, 1901–1906. [Google Scholar] [CrossRef]
- Yonezawa, T.; Suzuki, K.; Ooki, S.; Hashimoto, A. The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 5884–5896. [Google Scholar] [CrossRef]
- Padilha, A.F.; Rios, P.R. Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Int. 2002, 42, 325–327. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Huang, Y.; Choi, H.; Choe, H.; Lábár, J.L.; Langdon, T.G.; Gubicza, J. High Temperature Thermal Stability of Nanocrystalline 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2017, 682, 323–331. [Google Scholar] [CrossRef]
- Stornelli, G.; Albini, L.; Di Nunzio, P.E.; Tiracorrendo, G.; Vargas, B.R.R.; Di Schino, A. Effect of Ultrafast Heating on AISI 441 Ferritic Stainless Steel. Acta Metall. Slovaca 2023, 29, 22–25. [Google Scholar] [CrossRef]
- Bowman, A.L.; Arnold, G.P.; Storms, E.K.; Nereson, N.G. The Crystal Structure of Cr23C6. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 3102–3103. [Google Scholar] [CrossRef]
- Lai, J.K.L. A Review of Precipitation Behaviour in AISI Type 316 Stainless Steel. Mater. Sci. Eng. 1983, 61, 101–109. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, Z.; Dong, L.; Liang, B. Characterization of M23C6 Carbides Precipitating at Grain Boundaries in 100Mn13 Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 4862–4868. [Google Scholar] [CrossRef]
- De Moraes, F.P.; Amaral, E.M.; Neto, F.B.; Padilha, A.F.; de Moraes, F.P.; Amaral, E.M.; Neto, F.B.; Padilha, A.F. Failure Analysis of an AISI 316 Steel Pipe Elbow Exposed to the weather for Three Years after 16 Years of Operating at 515 °C. Tecnol. Metal. Mater. Min. 2023, 20, e2879. [Google Scholar] [CrossRef]
- Rollett, A.; Humphreys, F.; Rohrer, G.S.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–628. [Google Scholar] [CrossRef]
- Odnobokova, M.; Yanushkevich, Z.; Kaibyshev, R.; Belyakov, A. On the Strength of a 316L-Type Stainless Steel Subjected to Cold or Warm Rolling Followed by Annealing. Materials 2020, 13, 2116. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Sangal, S.; Murty, G.S. Hall–Petch Behaviour of 316L Austenitic Stainless Steel at Room Temperature. Mater. Sci. Technol. 2002, 18, 165–172. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe–22 Wt.% Mn–0.6 Wt.% C TWIP Steel. Mater. Sci. Eng. A 2010, 527, 3552–3560. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Srinivasan, S.G.; Lavernia, E.J. Nucleation of Deformation Twins in Nanocrystalline Face-Centered-Cubic Metals Processed by Severe Plastic Deformation. J. Appl. Phys. 2005, 98, 034319. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation Twinning in Nanocrystalline Materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef]
- Park, K.T.; Jin, K.G.; Han, S.H.; Hwang, S.W.; Choi, K.; Lee, C.S. Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Addition. Mater. Sci. Eng. A 2010, 527, 3651–3661. [Google Scholar] [CrossRef]
- Huang, C.X.; Wang, K.; Wu, S.D.; Zhang, Z.F.; Li, G.Y.; Li, S.X. Deformation Twinning in Polycrystalline Copper at Room Temperature and Low Strain Rate. Acta Mater. 2006, 54, 655–665. [Google Scholar] [CrossRef]
- Meyers, M.A.; Vöhringer, O.; Lubarda, V.A. The Onset of Twinning in Metals: A Constitutive Description. Acta Mater. 2001, 49, 4025–4039. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. Grain Size Effects on Dislocation and Twinning Mediated Plasticity in Magnesium. Scr. Mater. 2016, 112, 50–53. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. Orientation Influence on Grain Size Effects in Ultrafine-Grained Magnesium. Scr. Mater. 2015, 97, 25–28. [Google Scholar] [CrossRef]
- Kashyap, K.T.; Bhat, A.; Koppad, P.G.; Puneeth, K.B. On Peierls Nabarro Stress in Iron. Comput. Mater. Sci. 2012, 56, 172–173. [Google Scholar] [CrossRef]
- Chen, S.; Ma, G.; Wu, G.; Godfrey, A.; Huang, T.; Huang, X. Strengthening Mechanisms in Selective Laser Melted 316L Stainless Steel. Mater. Sci. Eng. A 2022, 832, 142434. [Google Scholar] [CrossRef]
- Pickering, F.B. Physical Metallurgy and the Design of Steels, 1st ed.; Applied Science Publishers: Cleveland, OH, USA, 1978; ISBN 9780853347521. [Google Scholar]
- Mohd Yusuf, S.; Chen, Y.; Yang, S.; Gao, N. Microstructural Evolution and Strengthening of Selective Laser Melted 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Charact. 2020, 159, 110012. [Google Scholar] [CrossRef]
- Irvine, K.J.; Gladman, T.; Pickering, F. The Strength of Austenitic Stainless Steels. J. Iron Steel Inst. 1969, 207, 1017–1028. [Google Scholar]
- Odnobokova, M.; Torganchuk, V.; Tikhonova, M.; Dolzhenko, P.; Kaibyshev, R.; Belyakov, A. On the Strength of a 316L-Type Austenitic Stainless Steel Produced by Selective Laser Melting. Metals 2023, 13, 1423. [Google Scholar] [CrossRef]
- Karavaeva, M.V.; Abramova, M.M.; Enikeev, N.A.; Raab, G.I.; Valiev, R.Z. Superior Strength of Austenitic Steel Produced by Combined Processing, Including Equal-Channel Angular Pressing and Rolling. Metals 2016, 6, 310. [Google Scholar] [CrossRef]
- Belyakov, A.; Odnobokova, M.; Yanushkevich, Z.; Nazarova, M.; Kaibyshev, R. On Strengthening of Ultrafine Grained Austenitic Steels Subjected to Large Strain Deformation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 672, 012021. [Google Scholar] [CrossRef]
- Di Schino, A.; Salvatori, I.; Kenny, J.M. Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI 304 Stainless Steel. J. Mater. Sci. 2002, 37, 4561–4565. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1934, 145, 362–387. [Google Scholar] [CrossRef]
- Kim, J.G.; Enikeev, N.A.; Seol, J.B.; Abramova, M.M.; Karavaeva, M.V.; Valiev, R.Z.; Park, C.G.; Kim, H.S. Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel. Sci. Rep. 2018, 8, 11200. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, S.H. Significant Dislocation Strengthening of Stainless Steel 316L via Co-Directed Energy Deposition of Silica. Mater. Sci. Eng. A 2024, 891, 145948. [Google Scholar] [CrossRef]
- Liu, X.; Hu, R.; Yang, C.; Luo, X.; Bai, J.; Ma, R. Microstructure Evolution and Strengthening Mechanism of Γ′-Strengthening Superalloy Prepared by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2023, 871, 144915. [Google Scholar] [CrossRef]
- Khedr, M.; Li, W.; Min, N.; Abd-Elaziem, W.; Jin, X. Strengthening Contributions of Mechanical Twinning and Dislocations to the Flow Stress of Hadfield High-Manganese Steel: Quantitative Analysis. J. Mater. Eng. Perform. 2023, 32, 501–511. [Google Scholar] [CrossRef]
- Qin, S.; Lee, S.; Tsuchiya, T.; Matsuda, K.; Horita, Z.; Kocisko, R.; Kvackaj, T. Aging Behavior of Al-Li-(Cu, Mg) Alloys Processed by Different Deformation Methods. Mater. Des. 2020, 196, 109139. [Google Scholar] [CrossRef]
- Bidulskỳ, R.; Bidulská, J.; Gobber, F.S.; Kvačkaj, T.; Petroušek, P.; Actis-Grande, M.; Weiss, K.P.; Manfredi, D. Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions. Materials 2020, 13, 3328. [Google Scholar] [CrossRef] [PubMed]
- Kvačkaj, T.; Demjan, I.; Bella, P.; Kočiško, R.; Petroušek, P.; Fedorikova, A.; Bidulská, J.; Lupták, M.; Jandačka, P.; Lascsáková, M. The Influence of Annealing Temperature on the Magnetic Properties of Cryo-Rolled Non-Oriented Electrical Steel. Acta Metall. Slovaca 2022, 28, 97–100. [Google Scholar] [CrossRef]
- Petroušek, P.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Grande, M.A.; Manfredi, D.; Weiss, K.P.; Kočiško, R.; Lupták, M.; Pokorný, I. Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment. Materials 2023, 16, 3935. [Google Scholar] [CrossRef]
- Bidulský, R.; Bidulská, J.; Kvackaj, T.; Grande, M.A. Case Study of Advanced Processed OFHC Copper by Dry Sliding Wear Test. Acta Metall. Slovaca 2023, 29, 34–38. [Google Scholar] [CrossRef]
- Kapoor, G.; Kvackaj, T.; Heczel, A.; Bidulská, J.; Kociško, R.; Fogarassy, Z.; Simcak, D.; Gubicza, J. The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu–Cr–Zr Alloy. Materials 2020, 13, 2241. [Google Scholar] [CrossRef] [PubMed]
- Kvackaj, T.; Kočiško, R.; Tiža, J.; Bidulská, J.; Kovácová, A.; Bidulský, R.; Bacsó, J.; Vlado, M. Application of Workability Test to SPD Processing. Arch. Metall. Mater. 2013, 58, 407–412. [Google Scholar] [CrossRef]
- Bidulská, J.; Kvačkaj, T.; Kočiško, R.; Bidulský, R.; Actis Grande, M.; Donič, T.; Martikán, M. Influence of ECAP-Back Pressure on the Porosity Distribution. Acta Phys. Pol. A 2010, 117, 864–868. [Google Scholar] [CrossRef]
- Kočiško, R.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Petroušek, P.; Pokorný, I.; Lupták, M.; Actis Grande, M. Evaluation of Powder Metallurgy Workpiece Prepared by Equal Channel Angular Rolling. Materials 2023, 16, 601. [Google Scholar] [CrossRef]
- Chung, Y.H.; Park, J.W.; Lee, K.H. Controlling the Thickness Uniformity in Equal Channel Angular Rolling (ECAR). Mater. Sci. Forum 2007, 539–543, 2872–2877. [Google Scholar] [CrossRef]
- Kaščák, Ľ.; Varga, J.; Bidulská, J.; Bidulský, R.; Grande, M.A. Simulation Tool for Material Behaviour Prediction in Additive Manufacturing. Acta Metall. Slovaca 2023, 29, 113–118. [Google Scholar] [CrossRef]
- Di Schino, A.; Stornelli, G. Additive Manufacturing: A New Concept for End Users. the Case of Magnetic Materials. Acta Metall. Slovaca 2022, 28, 208–211. [Google Scholar] [CrossRef]
- Nguyen, S.A.; Pham, K.G.; Seidel, C.; Pham, A.H.; Phung, C.N.; Trinh, T. Change in Microstructure and Hardness of Additively Manufactured AISI H13 Steel by Heat Treatment and Nitriding Processes. Acta Metall. Slovaca 2023, 29, 82–87. [Google Scholar] [CrossRef]
- Dagnaw, M.; Brytan, Z.; Bidulská, J.; Bidulský, R. Corrosion Evaluation of LPBF-Manufactured Duplex Stainless Steel. Acta Metall. Slovaca 2024, 30, 34–40. [Google Scholar] [CrossRef]
Equation | The Authors |
---|---|
γSFE = 1.2+ 17.7. (%Mn) + 1.4. (%Ni) + 0.6. (%Cr) − 44.7. (%Si) | [56] |
γSFE = 16.7 + 26. (%C) + 2.1. (%Ni) − 0.9. (%Cr) | [57] |
γSFE = 5.53 + 17.1. (%N) + 1.4. (%Ni) − 0.16. (%Cr) | [58] |
γSFE = −7.1 + 2.8. (%Ni) + 2.0. (%Mo) + 0.75. (%Mn) + 0.49. (%Cr) − 24.0. (%N) − 5.7. (%C) − 2.0. (%Si) | [59] |
γSFE = 2.2 + 40. (%C) + 1.9. (%Ni) + 0.77. (%Mo) + 0.5. (%Mn) −3.6. (%N) − 2.9. (Si) − 0.016. (%Cr) | [60] |
C | Cr | Ni | Mn | Mo | Si | P | S | V | Ti | Nb | N | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 18.76 | 13.73 | 1.5 | 1.87 | 0.5 | 0.007 | 0.003 | 0.02 | 0.004 | 0.02 | 0.13 | 0.001 |
Treatment of Sample | Endothermic Thermal Effect | Exothermic Thermal Effect | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature [°C] | Temperature [°C] | ||||||||
TOnset | TPeak | TFinal | Stored Energy: ΔH [J/g] | Dislocation Density: ρ [m−2 × 1015] | TOnset | TPeak | TFinal | Stored Energy: ΔH [J/g] | |
After SA_peak1 | - | - | - | - | - | 398 | 511 | 601 | 13.560 |
After SA_peak2 | - | - | - | - | - | 759 | 841 | 843 | 3.691 |
A10_peak1 | 195 | 274 | 330 | 1.23 | 1.7 | - | - | - | - |
A10_peak2 | - | - | - | 365 | 433 | 555 | 2.657 | ||
A30_peak1 | 164 | 271 | 376 | 21.28 | 6.8 | - | - | - | - |
A30_peak2 | - | - | - | - | - | 463 | 508 | 537 | 2.427 |
A30_peak3 | - | - | - | - | - | 795 | 864 | - | 5.649 |
A50_peak1 | 207 | 277 | 339 | 1.469 | 5.17 | - | - | - | - |
A50_peak2 | - | - | - | - | - | 509 | 569 | 623 | 2.361 |
A50_peak3 | - | - | - | - | - | 808 | 877 | 879 | 7.992 |
Equation | Calculated Value SFE [mJ/m2] | Reference |
---|---|---|
γSFE = 5.53 + 17.1. (%N) + 1.4. (%Ni) − 0.16. (%Cr) | 24.0 | [58] |
γSFE = 16.7 + 26. (%C) + 2.1. (%Ni) − 0.9. (%Cr) | 30.2 | [57] |
γSFE = 2.2 + 40. (%C) + 1.9. (%Ni) + 0.77. (%Mo) + 0.5. (%Mn) − 3.6. (%N) − 2.9. (Si) − 0.016. (%Cr) | 30.7 | [60] |
γSFE = 1.2 + 17.7. (%Mn) + 1.4. (%Ni) + 0.6. (%Cr)—44.7. (%Si) | 35.9 | [56] |
γSFE = –7.1 + 2.8. (%Ni) + 2.0. (%Mo) + 0.75. (%Mn) + 0.49. (%Cr) − 24.0. (%N) − 5.7. (%C) − 2.0. (%Si) | 40.9 | [59] |
Chemical Composition [mass %] | |||||||
---|---|---|---|---|---|---|---|
Steel Grade | C | N | Cr | Ni | Mn | ky_GB [MPa.μm1/2] | Authors |
AISI 316 L | 0.08 | - | 16.2 | 9.1 | - | 300 | [85] |
AISI 316 L | 0.04 | - | 17.3 | 10.7 | 1.7 | 300 | [86] |
AISI 316 L | 0.023 | 0.091 | 17.7 | 12.7 | 0.9 | 452 | [16] |
AISI 316 L | 0.06 | 0.024 | 18.4 | 8.6 | 0.33 | 500 | [87] |
AISI316 LN | 0.06 | 0.13 | 18.8 | 13.7 | 1.5 | 500 | As present |
∆RP0.2 [MPa] | ∆RP0.2_PN | ∆RP0.2_IS | ∆RP0.2_SE | ∆RP0.2_GB | ∆RP0.2_DS | ∆RP0.2_RT | RP0.2 |
---|---|---|---|---|---|---|---|
Min. | 112 | 78 | 109 | 50 (ε = 0%) | 103 (ε = 0%) | 83 (ε = 0%) | 535 |
Max. | 123 | 78 | 126 | 80 (ε = 50%) | 560 (ε = 50%) | 140 (ε = 50%) | 1107 |
5–60 [25,30,31] | 97 [16] | 96.6 [16] | 60–90 [25] | 343.1 [16] |
Mechanical Properties | ||||
---|---|---|---|---|
Processing Conditions | RP0.2 [MPa] | Rm [MPa] | A5 [%] | Reference |
After annealing | ≤300 | 550–750 | >35 | [32] |
325 | 641 | 49 | [this article] | |
Cold deformation (coarse-grained structures) | ≤600 | - | - | [33] |
994 | 1057 | 4 | [this article] | |
SPD techniques (UFG structures) | 1100–1500 | - | - | [35,36,37,38,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvackaj, T.; Bidulská, J.; Fedoríková, A.; Bidulský, R. Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials 2025, 18, 499. https://doi.org/10.3390/ma18030499
Kvackaj T, Bidulská J, Fedoríková A, Bidulský R. Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials. 2025; 18(3):499. https://doi.org/10.3390/ma18030499
Chicago/Turabian StyleKvackaj, Tibor, Jana Bidulská, Alica Fedoríková, and Róbert Bidulský. 2025. "Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade" Materials 18, no. 3: 499. https://doi.org/10.3390/ma18030499
APA StyleKvackaj, T., Bidulská, J., Fedoríková, A., & Bidulský, R. (2025). Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials, 18(3), 499. https://doi.org/10.3390/ma18030499