Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Results and Analysis
3.1. Microstructure Analysis
3.1.1. Initial State After Solution Annealing
3.1.2. Study of Microstructures After Sample Processing at Ambient Temperatures
- d [μm]—grain diameter;
- ε [%]—relative thickness reduction.
3.2. Isothermal DSC Analysis and Analysis of Dislocation Density
- (i)
- According to [62,63], the first exothermic peak is defined as the reverse transformation of α′-martensite to γ-austenite, which lies within the temperature interval TSA, α′ → γ <467;673> [°C]. From the real DSC, the diagram shows that this transformation was observed at the temperature interval TSA, α′ → γ <398;601> [°C].
- (ii)
- The second exothermic peak resulted from the DSC measurement lying in the temperature interval TM23C6<759;843> [°C] and, according to the authors of [64,65,66], is related to the formation of M23C6 carbide. The carbon solubility equilibrium state in the M23C6 carbide of AISI 316 austenitic stainless steel was described by the authors of [67] by the following formula:
- -
- Deformation 10%: TA10_peak1 ∈ <195;330> [°C] with stored energy:∆HA10_peak1 = 1.23 J/g and calculated dislocation density: ρA10_peak1 = 1.74 × 10+15 m−2.
- -
- Deformation 30%: TA30_peak1 ∈ <164;376> [°C] with stored energy:∆HA30_peak1 = 21.28 J/g and calculated dislocation density: ρA30_peak1 = 6.8 × 10+15 m−2.
- -
- Deformation 50%: TA50_peak1 ∈ <207;339> [°C] with stored energy:∆HA50_peak1 = 1.469J/g and calculated dislocation density: ρA50_peak1 = 5.17 × 10+15 m−2.
- c2 [-]—numerical factor;
- G = 75 [GPa]—shear modulus;
- b = 0.25597 [nm]—Burger’s vector.
- C0 [-]—constant.
- RP0.2 [MPa]—the offset yield strength;
- ε [%]—thickness rolling reduction.
- R0 [MPa]—yield stress in single crystal (friction stress);
- ky [MPa.μm−1/2]—Hall–Petch coefficient describing the grain boundary strengthening;
- d−1/2 [μm−1/2]—the inverse square root of the grain size diameter.
3.3. Mechanisms of Plastic Deformation
- a = 0.3619 [nm]—is the lattice parameter;
- d [nm]—diameter of grain size.
3.4. Strengthening Contributions to the Yield Strength
- ∆ RP0.2_PN [MPa]—strengthening contribution from Peierls–Nabarro stress;
- ∆ RP0.2_IS [MPa]—strengthening contribution of the solid solution from interstitial elements;
- ∆ RP0.2_SE [MPa]—strengthening contribution of the solid solution from substitution elements;
- ∆ RP0.2_GB [MPa]—strengthening contribution from grain boundaries (Hall–Petch);
- ∆ RP0.2_DS [MPa]—strengthening contribution from dislocation;
- ∆ RP0.2_DT [MPa]—strengthening contribution from deformation twinning;
- ∆ RP0.2_PR [MPa]—strengthening contribution from precipitates.
- (a)
- (b)
- The author of [81] described the strengthening contribution of the solid solution by interstitial elements and proposed the following formula:∆ RP0.2_IS = 354.C + 493.N = 354.0.06 + 493.0.13 = 78 MPa
- (c)
- The strengthening contribution of the solid solution by substitution elements can be calculated according to the following formulas:
- (d)
- (e)
- The strengthening contribution from grain boundaries is described by the Hall–Petch formula as follows:
- -
- For the diameter of grain size d = 64 μm:
- -
- For the diameter of grain size d = 214 μm:
- (f)
- The strengthening contribution from dislocation density
- α [-]—dislocation strengthening coefficient α ∈ <0.23; 0.3> [91];
- G = 75 [GPa]—shear modulus;
- b = 0.2559 [nm]—Burgers vector of perfect dislocation;
- ρ [m−2]—dislocation density.
- (g)
- The strengthening contribution from deformation twinning
- ky_DT [MPa.μm1/2]—twin boundary strengthening coefficient.
- (h)
- The strengthening contribution from precipitates
- (i)
- Contributions independent from plastic deformation conditions—passive options (∆RP0.2_PN, ∆RP0.2_IS, ∆RP0.2_SE);
- (ii)
- Contributions dependent on plastic deformation conditions—active options (∆RP0.2_GB, ∆RP0.2_DS, ∆RP0.2_DT).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Pisón, P.; Rodríguez-Martínez, J.A.; García-Tabarés, E.; Avilés-Santillana, I.; Sgobba, S. Flow and Fracture of Austenitic Stainless Steels at Cryogenic Temperatures. Eng. Fract. Mech. 2021, 258, 108042. [Google Scholar] [CrossRef]
- ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys—ASM International. Available online: https://www.asminternational.org/asm-handbook-volume-1-properties-and-selection-irons-steels-and-high-performance-alloys/results/-/journal_content/56/06181G/PUBLICATION (accessed on 27 November 2024).
- Singh, R.; Agrahari, S.; Yadav, S.D.; Kumar, A. Microstructural Evolution and Mechanical Properties of 316 Austenitic Stainless Steel by CGP. Mater. Sci. Eng. A 2021, 812, 141105. [Google Scholar] [CrossRef]
- Chen, S.; Sun, L.; Li, W. Effect of Chloride Threshold on Pitting Behavior of 316LN Stainless Steel in Sour Water Solution by Electrochemical Analysis. Mater. Corros. 2023, 74, 244–254. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Zhou, C.; Tan, H. Effect of Carbonation on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution. Constr. Build. Mater. 2017, 130, 193–201. [Google Scholar] [CrossRef]
- Sonekar, M.M.; Rathod, W.S. An Experimental Investigation on Tribologial Behavior of Bio-Implant Material (SS-316 l & Ti6Al4V) for Orthopaedic Applications. Mater. Today Proc. 2019, 19, 444–447. [Google Scholar] [CrossRef]
- Xu, D.M.; Li, G.Q.; Wan, X.L.; Xiong, R.L.; Xu, G.; Wu, K.M.; Somani, M.C.; Misra, R.D.K. Deformation Behavior of High Yield Strength—High Ductility Ultrafine-Grained 316LN Austenitic Stainless Steel. Mater. Sci. Eng. A 2017, 688, 407–415. [Google Scholar] [CrossRef]
- Czarkowski, P.; Krawczynska, A.T.; Slesinski, R.; Brynk, T.; Budniak, J.; Lewandowska, M.; Kurzydlowski, K.J. Low Temperature Mechanical Properties of 316L Type Stainless Steel after Hydrostatic Extrusion. Fusion Eng. Des. 2011, 86, 2517–2521. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Huang, R.; Li, L. Influence of Pre-Strain on Cryogenic Tensile Properties of 316LN Austenitic Stainless Steel. Cryogenics 2020, 106, 103058. [Google Scholar] [CrossRef]
- Kvačkaj, T.; Bidulský, R.; Kováčová, A.; Ileninová, J.; Bidulská, J. Analysis of Metallic Materials for Iter with the Emphasis on Copper Alloys. Acta Metall. Slovaca 2014, 20, 397–404. [Google Scholar] [CrossRef]
- Ishio, K.; Nakajima, H. Effects of Nitrogen on the Mechanical Propeties of 316LN Stainless Steels. Tetsu-Hagane 2006, 92, 90–96. [Google Scholar] [CrossRef]
- Das, A. Cyclic Plasticity Induced Transformation of Austenitic Stainless Steels. Mater. Charact. 2019, 149, 1–25. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2021, 92, 2000242. [Google Scholar] [CrossRef]
- Umezawa, O. Review of the Mechanical Properties of High-Strength Alloys at Cryogenic Temperatures. Mater. Perform. Charact. 2021, 10, 3–15. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, W.; Ma, B. Effect of Nitrogen Content on Mechanical Properties of 316L(N) Austenitic Stainless Steel. Mater. Sci. Eng. A 2023, 884, 145549. [Google Scholar] [CrossRef]
- Cui, L.; Jiang, S.; Xu, J.; Peng, R.L.; Mousavian, R.T.; Moverare, J. Revealing Relationships between Microstructure and Hardening Nature of Additively Manufactured 316L Stainless Steel. Mater. Des. 2021, 198, 109385. [Google Scholar] [CrossRef]
- Sakurai, T.; Umezawa, O. High-Strength and High-Toughness Austenitic Stainless Steels Based on Type 316LN at 4.2 K. Cryogenics 2023, 136, 103762. [Google Scholar] [CrossRef]
- Simon, N.J.; Reed, R.P. Strength and Toughness of Aisi 304 and 316 at 4 K. J. Nucl. Mater. 1986, 141–143, 44–48. [Google Scholar] [CrossRef]
- Taweejun, N.; Kanchanomai, C. Effects of Carbon and Nitrogen on the Microstructure and Mechanical Properties of Carbonitrided Low-Carbon Steel. J. Mater. Eng. Perform. 2015, 24, 4853–4862. [Google Scholar] [CrossRef]
- Sakurai, T.; Iguchi, M.; Nakahira, M. Tensile Property Evaluation of Cryogenic Structural Materials for the ITER TF Coil. Teion Kogaku 2019, 54, 459–466. [Google Scholar] [CrossRef]
- Kvackaj, T.; Bidulská, J.; Bidulský, R. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes. Materials 2021, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Endoh, K.; Ii, S.; Kimura, Y.; Sasaki, T.; Goto, S.; Yokota, T.; Ohmura, T. Effects of Grain Boundary Geometry and Boron Addition on the Local Mechanical Behavior of Interstitial-Free (IF) Steels. Mater. Trans. 2021, 62, 1479–1488. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, H.; Pan, S.; Xu, B.; Liu, S.; Sun, M. Effect of Boron Addition on the Microstructure and Cryogenic Mechanical Properties of N50 Stainless Steel after Aging Treatment. Mater. Sci. Eng. A 2023, 881, 145372. [Google Scholar] [CrossRef]
- Behjati, P.; Kermanpur, A.; Najafizadeh, A.; Samaei Baghbadorani, H.; Karjalainen, L.P.; Jung, J.G.; Lee, Y.K. Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 6317–6328. [Google Scholar] [CrossRef]
- Qiu, C.; Kindi, M.A.; Aladawi, A.S.; Hatmi, I.A. A Comprehensive Study on Microstructure and Tensile Behaviour of a Selectively Laser Melted Stainless Steel. Sci. Rep. 2018, 8, 7785. [Google Scholar] [CrossRef] [PubMed]
- Kvackaj, T.; Bidulska, J. From Micro to Nano Scale Structure by Plastic Deformations. Mater. Sci. Forum 2014, 783–786, 842–847. [Google Scholar] [CrossRef]
- Kvackaj, T.; Kovacova, A.; Kocisko, R.; Bidulska, J.; Lityńska–Dobrzyńska, L.; Jenei, P.; Gubicza, J. Microstructure Evolution and Mechanical Performance of Copper Processed by Equal Channel Angular Rolling. Mater. Charact. 2017, 134, 246–252. [Google Scholar] [CrossRef]
- Šimčák, D.; Kvačkaj, T.; Kočiško, R.; Bidulský, R.; Kepič, J.; Puchý, V. Evaluation of High Purity Aluminium after Asymmetric Rolling at Ambient and Cryogenic Temperatures. Acta Metall. Slovaca 2017, 23, 99–104. [Google Scholar] [CrossRef]
- Kováčová, A.; Kvačkaj, T.; Bidulský, R.; Bidulská, J.; Kočiško, R.; Dutkiewicz, J.; Lityńska-Dobrzyńska, L. Investigation of the Ultrafine-Grained Structure Formation under Different Strain Rates. Arch. Metall. Mater. 2017, 62, 851–856. [Google Scholar] [CrossRef]
- Smith, T.R.; Sugar, J.D.; San Marchi, C.; Schoenung, J.M. Strengthening Mechanisms in Directed Energy Deposited Austenitic Stainless Steel. Acta Mater. 2019, 164, 728–740. [Google Scholar] [CrossRef]
- Choudhary, B.K.; Christopher, J. Tensile Flow and Work Hardening Behaviour of Type 316L(N) Austenitic Stainless Steel in the Framework of One-Internal-Variableand Two-Internal-Variable Approaches. Mater. Sci. Eng. A 2015, 636, 269–278. [Google Scholar] [CrossRef]
- 1.4910 (AISI 316 LN), S31653|Datasheet|METALCOR. Available online: https://www.metalcor.de/en/datenblatt/68/ (accessed on 27 November 2024).
- Austenitic Stainless Steel: Definition, Composition, Properties, Grades, Applications and More. Available online: https://steelprogroup.com/stainless-steel/type/austenitic/#elementor-toc__heading-anchor-0 (accessed on 8 August 2024).
- ITER—The Way to New Energy. Available online: https://www.iter.org/ (accessed on 27 November 2024).
- Challa, V.S.A.; Wan, X.L.; Somani, M.C.; Karjalainen, L.P.; Misra, R.D.K. Strain Hardening Behavior of Phase Reversion-Induced Nanograined/Ultrafine-Grained (NG/UFG) Austenitic Stainless Steel and Relationship with Grain Size and Deformation Mechanism. Mater. Sci. Eng. A 2014, 613, 60–70. [Google Scholar] [CrossRef]
- Dong, F.Y.; Zhang, P.; Pang, J.C.; Chen, D.M.; Yang, K.; Zhang, Z.F. Optimizing Strength and Ductility of Austenitic Stainless Steels through Equal-Channel Angular Pressing and Adding Nitrogen Element. Mater. Sci. Eng. A 2013, 587, 185–191. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Rui, W.; Li, J.; Huang, Z.; Sui, F. Deformation Mechanisms of 316L Austenitic Stainless Steel Tubes under Equal Channel Angular Pressing. J. Mater. Eng. Perform. 2020, 29, 1253–1261. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Q.; Liu, Z.; Zeng, S.; Shi, Q.; Peng, J.; Li, Y. Microstructural Evolution, Mechanical Properties and Tribological Behavior of SiC Reinforced 316L Matrix Composites Fabricated by Additive Manufacturing. J. Mater. Res. Technol. 2024, 30, 1889–1899. [Google Scholar] [CrossRef]
- Gubicza, J.; El-Tahawy, M.; Huang, Y.; Choi, H.; Choe, H.; Lábár, J.L.; Langdon, T.G. Microstructure, Phase Composition and Hardness Evolution in 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2016, 657, 215–223. [Google Scholar] [CrossRef]
- Üçok, I.; Ando, T.; Grant, N.J. Property Enhancement in Type 316L Stainless Steel by Spray Forming. Mater. Sci. Eng. A 1991, 133, 284–287. [Google Scholar] [CrossRef]
- Xiong, Y.; He, T.; Wang, J.; Lu, Y.; Chen, L.; Ren, F.; Liu, Y.; Volinsky, A.A. Cryorolling Effect on Microstructure and Mechanical Properties of Fe–25Cr–20Ni Austenitic Stainless Steel. Mater. Des. 2015, 88, 398–405. [Google Scholar] [CrossRef]
- Roy, B.; Kumar, R.; Das, J. Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel. Mater. Sci. Eng. A 2015, 631, 241–247. [Google Scholar] [CrossRef]
- Xiong, Y.; Yue, Y.; Lu, Y.; He, T.; Fan, M.; Ren, F.; Cao, W. Cryorolling Impacts on Microstructure and Mechanical Properties of AISI 316 LN Austenitic Stainless Steel. Mater. Sci. Eng. A 2018, 709, 270–276. [Google Scholar] [CrossRef]
- Vargas, B.R.R.; Albini, L.; Tiracorrendo, G.; Massi, R.; Stornelli, G.; Di Schino, A. Effect of Ultrafast Heating on AISI 304 Austenitic Stainless Steel. Acta Metall. Slovaca 2023, 29, 104–107. [Google Scholar] [CrossRef]
- Kvackaj, T.; Rozsypalova, A.; Kocisko, R.; Bidulska, J.; Petrousek, P.; Vlado, M.; Pokorny, I.; Sas, J.; Weiss, K.P.; Duchek, M.; et al. Influence of Processing Conditions on Properties of AISI 316LN Steel Grade. J. Mater. Eng. Perform. 2020, 29, 1509–1514. [Google Scholar] [CrossRef]
- Fedoriková, A.; Petroušek, P.; Kvačkaj, T.; Kočiško, R.; Zemko, M. Development of Mechanical Properties of Stainless Steel 316LN-IG after Cryo-Plastic Deformation. Materials 2023, 16, 6473. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hultman, L.; Holmström, E.; Antonsson, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking Fault Energies in Austenitic Stainless Steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Shang, S.; Zhang, A.; Xiong, S.; Liu, Z.K.; Liu, F. Insights into Plastic Deformation Mechanisms of Austenitic Steels by Coupling Generalized Stacking Fault Energy and Semi-Discrete Variational Peierls-Nabarro Model. Prog. Nat. Sci. Mater. Int. 2023, 33, 83–91. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Hu, Q.M.; Johansson, B.; Kwon, S.K.; Grehk, M.; Johnsson, J.Y.; Vitos, L. Generalized Stacking Fault Energy of γ-Fe. Philos. Mag. 2016, 96, 524–541. [Google Scholar] [CrossRef]
- Abbasi, A.; Dick, A.; Hickel, T.; Neugebauer, J. First-Principles Investigation of the Effect of Carbon on the Stacking Fault Energy of Fe–C Alloys. Acta Mater. 2011, 59, 3041–3048. [Google Scholar] [CrossRef]
- Kim, J.K.; De Cooman, B.C. Stacking Fault Energy and Deformation Mechanisms in Fe-XMn-0.6C-YAl TWIP Steel. Mater. Sci. Eng. A 2016, 676, 216–231. [Google Scholar] [CrossRef]
- Ueno, H.; Kakihata, K.; Kaneko, Y.; Hashimoto, S.; Vinogradov, A. Nanostructurization Assisted by Twinning during Equal Channel Angular Pressing of Metastable 316L Stainless Steel. J. Mater. Sci. 2011, 46, 4276–4283. [Google Scholar] [CrossRef]
- Sato, A.; Soma, K.; Mori, T. Hardening Due to Pre-Existing ϵ-Martensite in an Fe-30Mn-1Si Alloy Single Crystal. Acta Metall. 1982, 30, 1901–1907. [Google Scholar] [CrossRef]
- Seetharaman, V. Deformation and Martensitic Transformation. Bull. Mater. Sci. 1984, 6, 703–716. [Google Scholar] [CrossRef]
- Manjanna, J.; Kobayashi, S.; Kamada, Y.; Takahashi, S.; Kikuchi, H. Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at RT. J. Mater. Sci. 2008, 43, 2659–2665. [Google Scholar] [CrossRef]
- Ojima, M.; Adachi, Y.; Tomota, Y.; Katada, Y.; Kaneko, Y.; Kuroda, K.; Saka, H. Weak Beam TEM Study on Stacking Fault Energy of High Nitrogen Steels. Steel Res. Int. 2009, 80, 477–481. [Google Scholar] [CrossRef]
- Brofman, P.J.; Ansell, G.S. On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels. Metall. Trans. A 1978, 9, 879–880. [Google Scholar] [CrossRef]
- Meric de Bellefon, G.; van Duysen, J.C.; Sridharan, K. Composition-Dependence of Stacking Fault Energy in Austenitic Stainless Steels through Linear Regression with Random Intercepts. J. Nucl. Mater. 2017, 492, 227–230. [Google Scholar] [CrossRef]
- Rhodes, C.G.; Thompson, A.W. The Composition Dependence of Stacking Fault Energy in Austenitic Stainless Steels. Metall. Trans. A 1977, 8, 1901–1906. [Google Scholar] [CrossRef]
- Yonezawa, T.; Suzuki, K.; Ooki, S.; Hashimoto, A. The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 5884–5896. [Google Scholar] [CrossRef]
- Padilha, A.F.; Rios, P.R. Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Int. 2002, 42, 325–327. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Huang, Y.; Choi, H.; Choe, H.; Lábár, J.L.; Langdon, T.G.; Gubicza, J. High Temperature Thermal Stability of Nanocrystalline 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2017, 682, 323–331. [Google Scholar] [CrossRef]
- Stornelli, G.; Albini, L.; Di Nunzio, P.E.; Tiracorrendo, G.; Vargas, B.R.R.; Di Schino, A. Effect of Ultrafast Heating on AISI 441 Ferritic Stainless Steel. Acta Metall. Slovaca 2023, 29, 22–25. [Google Scholar] [CrossRef]
- Bowman, A.L.; Arnold, G.P.; Storms, E.K.; Nereson, N.G. The Crystal Structure of Cr23C6. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 3102–3103. [Google Scholar] [CrossRef]
- Lai, J.K.L. A Review of Precipitation Behaviour in AISI Type 316 Stainless Steel. Mater. Sci. Eng. 1983, 61, 101–109. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, Z.; Dong, L.; Liang, B. Characterization of M23C6 Carbides Precipitating at Grain Boundaries in 100Mn13 Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 4862–4868. [Google Scholar] [CrossRef]
- De Moraes, F.P.; Amaral, E.M.; Neto, F.B.; Padilha, A.F.; de Moraes, F.P.; Amaral, E.M.; Neto, F.B.; Padilha, A.F. Failure Analysis of an AISI 316 Steel Pipe Elbow Exposed to the weather for Three Years after 16 Years of Operating at 515 °C. Tecnol. Metal. Mater. Min. 2023, 20, e2879. [Google Scholar] [CrossRef]
- Rollett, A.; Humphreys, F.; Rohrer, G.S.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–628. [Google Scholar] [CrossRef]
- Odnobokova, M.; Yanushkevich, Z.; Kaibyshev, R.; Belyakov, A. On the Strength of a 316L-Type Stainless Steel Subjected to Cold or Warm Rolling Followed by Annealing. Materials 2020, 13, 2116. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Sangal, S.; Murty, G.S. Hall–Petch Behaviour of 316L Austenitic Stainless Steel at Room Temperature. Mater. Sci. Technol. 2002, 18, 165–172. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe–22 Wt.% Mn–0.6 Wt.% C TWIP Steel. Mater. Sci. Eng. A 2010, 527, 3552–3560. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Srinivasan, S.G.; Lavernia, E.J. Nucleation of Deformation Twins in Nanocrystalline Face-Centered-Cubic Metals Processed by Severe Plastic Deformation. J. Appl. Phys. 2005, 98, 034319. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation Twinning in Nanocrystalline Materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef]
- Park, K.T.; Jin, K.G.; Han, S.H.; Hwang, S.W.; Choi, K.; Lee, C.S. Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Addition. Mater. Sci. Eng. A 2010, 527, 3651–3661. [Google Scholar] [CrossRef]
- Huang, C.X.; Wang, K.; Wu, S.D.; Zhang, Z.F.; Li, G.Y.; Li, S.X. Deformation Twinning in Polycrystalline Copper at Room Temperature and Low Strain Rate. Acta Mater. 2006, 54, 655–665. [Google Scholar] [CrossRef]
- Meyers, M.A.; Vöhringer, O.; Lubarda, V.A. The Onset of Twinning in Metals: A Constitutive Description. Acta Mater. 2001, 49, 4025–4039. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. Grain Size Effects on Dislocation and Twinning Mediated Plasticity in Magnesium. Scr. Mater. 2016, 112, 50–53. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. Orientation Influence on Grain Size Effects in Ultrafine-Grained Magnesium. Scr. Mater. 2015, 97, 25–28. [Google Scholar] [CrossRef]
- Kashyap, K.T.; Bhat, A.; Koppad, P.G.; Puneeth, K.B. On Peierls Nabarro Stress in Iron. Comput. Mater. Sci. 2012, 56, 172–173. [Google Scholar] [CrossRef]
- Chen, S.; Ma, G.; Wu, G.; Godfrey, A.; Huang, T.; Huang, X. Strengthening Mechanisms in Selective Laser Melted 316L Stainless Steel. Mater. Sci. Eng. A 2022, 832, 142434. [Google Scholar] [CrossRef]
- Pickering, F.B. Physical Metallurgy and the Design of Steels, 1st ed.; Applied Science Publishers: Cleveland, OH, USA, 1978; ISBN 9780853347521. [Google Scholar]
- Mohd Yusuf, S.; Chen, Y.; Yang, S.; Gao, N. Microstructural Evolution and Strengthening of Selective Laser Melted 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Charact. 2020, 159, 110012. [Google Scholar] [CrossRef]
- Irvine, K.J.; Gladman, T.; Pickering, F. The Strength of Austenitic Stainless Steels. J. Iron Steel Inst. 1969, 207, 1017–1028. [Google Scholar]
- Odnobokova, M.; Torganchuk, V.; Tikhonova, M.; Dolzhenko, P.; Kaibyshev, R.; Belyakov, A. On the Strength of a 316L-Type Austenitic Stainless Steel Produced by Selective Laser Melting. Metals 2023, 13, 1423. [Google Scholar] [CrossRef]
- Karavaeva, M.V.; Abramova, M.M.; Enikeev, N.A.; Raab, G.I.; Valiev, R.Z. Superior Strength of Austenitic Steel Produced by Combined Processing, Including Equal-Channel Angular Pressing and Rolling. Metals 2016, 6, 310. [Google Scholar] [CrossRef]
- Belyakov, A.; Odnobokova, M.; Yanushkevich, Z.; Nazarova, M.; Kaibyshev, R. On Strengthening of Ultrafine Grained Austenitic Steels Subjected to Large Strain Deformation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 672, 012021. [Google Scholar] [CrossRef]
- Di Schino, A.; Salvatori, I.; Kenny, J.M. Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI 304 Stainless Steel. J. Mater. Sci. 2002, 37, 4561–4565. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1934, 145, 362–387. [Google Scholar] [CrossRef]
- Kim, J.G.; Enikeev, N.A.; Seol, J.B.; Abramova, M.M.; Karavaeva, M.V.; Valiev, R.Z.; Park, C.G.; Kim, H.S. Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel. Sci. Rep. 2018, 8, 11200. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, S.H. Significant Dislocation Strengthening of Stainless Steel 316L via Co-Directed Energy Deposition of Silica. Mater. Sci. Eng. A 2024, 891, 145948. [Google Scholar] [CrossRef]
- Liu, X.; Hu, R.; Yang, C.; Luo, X.; Bai, J.; Ma, R. Microstructure Evolution and Strengthening Mechanism of Γ′-Strengthening Superalloy Prepared by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2023, 871, 144915. [Google Scholar] [CrossRef]
- Khedr, M.; Li, W.; Min, N.; Abd-Elaziem, W.; Jin, X. Strengthening Contributions of Mechanical Twinning and Dislocations to the Flow Stress of Hadfield High-Manganese Steel: Quantitative Analysis. J. Mater. Eng. Perform. 2023, 32, 501–511. [Google Scholar] [CrossRef]
- Qin, S.; Lee, S.; Tsuchiya, T.; Matsuda, K.; Horita, Z.; Kocisko, R.; Kvackaj, T. Aging Behavior of Al-Li-(Cu, Mg) Alloys Processed by Different Deformation Methods. Mater. Des. 2020, 196, 109139. [Google Scholar] [CrossRef]
- Bidulskỳ, R.; Bidulská, J.; Gobber, F.S.; Kvačkaj, T.; Petroušek, P.; Actis-Grande, M.; Weiss, K.P.; Manfredi, D. Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions. Materials 2020, 13, 3328. [Google Scholar] [CrossRef] [PubMed]
- Kvačkaj, T.; Demjan, I.; Bella, P.; Kočiško, R.; Petroušek, P.; Fedorikova, A.; Bidulská, J.; Lupták, M.; Jandačka, P.; Lascsáková, M. The Influence of Annealing Temperature on the Magnetic Properties of Cryo-Rolled Non-Oriented Electrical Steel. Acta Metall. Slovaca 2022, 28, 97–100. [Google Scholar] [CrossRef]
- Petroušek, P.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Grande, M.A.; Manfredi, D.; Weiss, K.P.; Kočiško, R.; Lupták, M.; Pokorný, I. Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment. Materials 2023, 16, 3935. [Google Scholar] [CrossRef]
- Bidulský, R.; Bidulská, J.; Kvackaj, T.; Grande, M.A. Case Study of Advanced Processed OFHC Copper by Dry Sliding Wear Test. Acta Metall. Slovaca 2023, 29, 34–38. [Google Scholar] [CrossRef]
- Kapoor, G.; Kvackaj, T.; Heczel, A.; Bidulská, J.; Kociško, R.; Fogarassy, Z.; Simcak, D.; Gubicza, J. The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu–Cr–Zr Alloy. Materials 2020, 13, 2241. [Google Scholar] [CrossRef] [PubMed]
- Kvackaj, T.; Kočiško, R.; Tiža, J.; Bidulská, J.; Kovácová, A.; Bidulský, R.; Bacsó, J.; Vlado, M. Application of Workability Test to SPD Processing. Arch. Metall. Mater. 2013, 58, 407–412. [Google Scholar] [CrossRef]
- Bidulská, J.; Kvačkaj, T.; Kočiško, R.; Bidulský, R.; Actis Grande, M.; Donič, T.; Martikán, M. Influence of ECAP-Back Pressure on the Porosity Distribution. Acta Phys. Pol. A 2010, 117, 864–868. [Google Scholar] [CrossRef]
- Kočiško, R.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Petroušek, P.; Pokorný, I.; Lupták, M.; Actis Grande, M. Evaluation of Powder Metallurgy Workpiece Prepared by Equal Channel Angular Rolling. Materials 2023, 16, 601. [Google Scholar] [CrossRef]
- Chung, Y.H.; Park, J.W.; Lee, K.H. Controlling the Thickness Uniformity in Equal Channel Angular Rolling (ECAR). Mater. Sci. Forum 2007, 539–543, 2872–2877. [Google Scholar] [CrossRef]
- Kaščák, Ľ.; Varga, J.; Bidulská, J.; Bidulský, R.; Grande, M.A. Simulation Tool for Material Behaviour Prediction in Additive Manufacturing. Acta Metall. Slovaca 2023, 29, 113–118. [Google Scholar] [CrossRef]
- Di Schino, A.; Stornelli, G. Additive Manufacturing: A New Concept for End Users. the Case of Magnetic Materials. Acta Metall. Slovaca 2022, 28, 208–211. [Google Scholar] [CrossRef]
- Nguyen, S.A.; Pham, K.G.; Seidel, C.; Pham, A.H.; Phung, C.N.; Trinh, T. Change in Microstructure and Hardness of Additively Manufactured AISI H13 Steel by Heat Treatment and Nitriding Processes. Acta Metall. Slovaca 2023, 29, 82–87. [Google Scholar] [CrossRef]
- Dagnaw, M.; Brytan, Z.; Bidulská, J.; Bidulský, R. Corrosion Evaluation of LPBF-Manufactured Duplex Stainless Steel. Acta Metall. Slovaca 2024, 30, 34–40. [Google Scholar] [CrossRef]
Equation | The Authors |
---|---|
γSFE = 1.2+ 17.7. (%Mn) + 1.4. (%Ni) + 0.6. (%Cr) − 44.7. (%Si) | [56] |
γSFE = 16.7 + 26. (%C) + 2.1. (%Ni) − 0.9. (%Cr) | [57] |
γSFE = 5.53 + 17.1. (%N) + 1.4. (%Ni) − 0.16. (%Cr) | [58] |
γSFE = −7.1 + 2.8. (%Ni) + 2.0. (%Mo) + 0.75. (%Mn) + 0.49. (%Cr) − 24.0. (%N) − 5.7. (%C) − 2.0. (%Si) | [59] |
γSFE = 2.2 + 40. (%C) + 1.9. (%Ni) + 0.77. (%Mo) + 0.5. (%Mn) −3.6. (%N) − 2.9. (Si) − 0.016. (%Cr) | [60] |
C | Cr | Ni | Mn | Mo | Si | P | S | V | Ti | Nb | N | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 18.76 | 13.73 | 1.5 | 1.87 | 0.5 | 0.007 | 0.003 | 0.02 | 0.004 | 0.02 | 0.13 | 0.001 |
Treatment of Sample | Endothermic Thermal Effect | Exothermic Thermal Effect | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature [°C] | Temperature [°C] | ||||||||
TOnset | TPeak | TFinal | Stored Energy: ΔH [J/g] | Dislocation Density: ρ [m−2 × 1015] | TOnset | TPeak | TFinal | Stored Energy: ΔH [J/g] | |
After SA_peak1 | - | - | - | - | - | 398 | 511 | 601 | 13.560 |
After SA_peak2 | - | - | - | - | - | 759 | 841 | 843 | 3.691 |
A10_peak1 | 195 | 274 | 330 | 1.23 | 1.7 | - | - | - | - |
A10_peak2 | - | - | - | 365 | 433 | 555 | 2.657 | ||
A30_peak1 | 164 | 271 | 376 | 21.28 | 6.8 | - | - | - | - |
A30_peak2 | - | - | - | - | - | 463 | 508 | 537 | 2.427 |
A30_peak3 | - | - | - | - | - | 795 | 864 | - | 5.649 |
A50_peak1 | 207 | 277 | 339 | 1.469 | 5.17 | - | - | - | - |
A50_peak2 | - | - | - | - | - | 509 | 569 | 623 | 2.361 |
A50_peak3 | - | - | - | - | - | 808 | 877 | 879 | 7.992 |
Equation | Calculated Value SFE [mJ/m2] | Reference |
---|---|---|
γSFE = 5.53 + 17.1. (%N) + 1.4. (%Ni) − 0.16. (%Cr) | 24.0 | [58] |
γSFE = 16.7 + 26. (%C) + 2.1. (%Ni) − 0.9. (%Cr) | 30.2 | [57] |
γSFE = 2.2 + 40. (%C) + 1.9. (%Ni) + 0.77. (%Mo) + 0.5. (%Mn) − 3.6. (%N) − 2.9. (Si) − 0.016. (%Cr) | 30.7 | [60] |
γSFE = 1.2 + 17.7. (%Mn) + 1.4. (%Ni) + 0.6. (%Cr)—44.7. (%Si) | 35.9 | [56] |
γSFE = –7.1 + 2.8. (%Ni) + 2.0. (%Mo) + 0.75. (%Mn) + 0.49. (%Cr) − 24.0. (%N) − 5.7. (%C) − 2.0. (%Si) | 40.9 | [59] |
Chemical Composition [mass %] | |||||||
---|---|---|---|---|---|---|---|
Steel Grade | C | N | Cr | Ni | Mn | ky_GB [MPa.μm1/2] | Authors |
AISI 316 L | 0.08 | - | 16.2 | 9.1 | - | 300 | [85] |
AISI 316 L | 0.04 | - | 17.3 | 10.7 | 1.7 | 300 | [86] |
AISI 316 L | 0.023 | 0.091 | 17.7 | 12.7 | 0.9 | 452 | [16] |
AISI 316 L | 0.06 | 0.024 | 18.4 | 8.6 | 0.33 | 500 | [87] |
AISI316 LN | 0.06 | 0.13 | 18.8 | 13.7 | 1.5 | 500 | As present |
∆RP0.2 [MPa] | ∆RP0.2_PN | ∆RP0.2_IS | ∆RP0.2_SE | ∆RP0.2_GB | ∆RP0.2_DS | ∆RP0.2_RT | RP0.2 |
---|---|---|---|---|---|---|---|
Min. | 112 | 78 | 109 | 50 (ε = 0%) | 103 (ε = 0%) | 83 (ε = 0%) | 535 |
Max. | 123 | 78 | 126 | 80 (ε = 50%) | 560 (ε = 50%) | 140 (ε = 50%) | 1107 |
5–60 [25,30,31] | 97 [16] | 96.6 [16] | 60–90 [25] | 343.1 [16] |
Mechanical Properties | ||||
---|---|---|---|---|
Processing Conditions | RP0.2 [MPa] | Rm [MPa] | A5 [%] | Reference |
After annealing | ≤300 | 550–750 | >35 | [32] |
325 | 641 | 49 | [this article] | |
Cold deformation (coarse-grained structures) | ≤600 | - | - | [33] |
994 | 1057 | 4 | [this article] | |
SPD techniques (UFG structures) | 1100–1500 | - | - | [35,36,37,38,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvackaj, T.; Bidulská, J.; Fedoríková, A.; Bidulský, R. Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials 2025, 18, 499. https://doi.org/10.3390/ma18030499
Kvackaj T, Bidulská J, Fedoríková A, Bidulský R. Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials. 2025; 18(3):499. https://doi.org/10.3390/ma18030499
Chicago/Turabian StyleKvackaj, Tibor, Jana Bidulská, Alica Fedoríková, and Róbert Bidulský. 2025. "Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade" Materials 18, no. 3: 499. https://doi.org/10.3390/ma18030499
APA StyleKvackaj, T., Bidulská, J., Fedoríková, A., & Bidulský, R. (2025). Mechanical Properties and Strengthening Contributions of AISI 316 LN Austenitic Stainless Steel Grade. Materials, 18(3), 499. https://doi.org/10.3390/ma18030499