Exploring Construction of Biomedical Ti6Al4V-Ti5Cu Composite Alloy with Interpenetrating Structure: Microstructure and Corrosion Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Materials Analysis
2.3. Electrochemical Test
2.4. Antibacterial Experiment
3. Results
3.1. Microstructural Observation
3.2. Corrosion Behavior
3.3. Antibacterial Property
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Yuan, Z.; He, Y.; Lin, C.; Liu, P.; Cai, K. Antibacterial surface design of biomedical titanium materials for orthopedic applications. J. Mater. Sci. Technol. 2021, 78, 51–67. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, Y.; Xu, K.; Zhong, H.; Yang, Y.; Jin, S.; Yang, K.; Qi, X. Biological applications of copper-containing materials. Bioact. Mater. 2021, 6, 916–927. [Google Scholar] [CrossRef] [PubMed]
- ASTM F67; Standard Specification for Unalloyed Titanium, for Surgical Implant Application. ASTM International: West Conshohocken, PA, USA, 2024.
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef]
- Filipovic, U.; Dahmane, R.G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid. Interface Sci. 2020, 283, 102228. [Google Scholar] [CrossRef]
- Jia, M.; Jin, W.; Li, N.; Lyu, C.; Wang, Y. Related factors analysis and prevention of surgical implant infections in orthopedic patients. Chin. J. Nosocomiology 2017, 27, 5391–5394. [Google Scholar]
- Pfang, B.G.; Garcia-Canete, J.; Garcia-Lasheras, J.; Blanco, A.; Aunon, A.; Parron-Cambero, R.; Macias-Valcayo, A.; Esteban, J. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J. Clin. Med. 2019, 8, 8. [Google Scholar] [CrossRef]
- Grischke, J.; Eberhard, J.; Stiesch, M. Antimicrobial dental implant functionalization strategies—A systematic review. Dent. Mater. J. 2016, 35, 545–558. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Liu, C.; Wang, H.; Ren, B.; Yang, K.; Zhang, E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 392–400. [Google Scholar] [CrossRef]
- Zhang, E.; Li, F.; Wang, H.; Liu, J.; Wang, C.; Li, M.; Yang, K. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4280–4287. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, H.; Zhang, E.; You, J.; Ma, X.; Bai, X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Mater. Sci. Eng. C 2018, 92, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhang, S.; Sun, Z.; Ren, L.; Yang, K. Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ren, L.; Liu, R.; Yang, K.; Zhang, Y.; Liao, Z.; Liu, W.; Qi, M.; Misra, R.D.K. Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Ti–6Al–4V–5Cu Alloy. J. Mater. Sci. Technol. 2015, 31, 723–732. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, X.; Chen, M.; Hou, B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Liu, Z.; Liu, Y.J.; Zafar, Z.; Lu, Y.J.; Wu, X.; Jiang, Y.; Xu, Z.G.; Guo, Z.H.; Li, S.J. Achieving high strength and toughness by engineering 3D artificial nacre-like structures inTi6Al4V-Ti metallic composite. Compos. Pt. B Eng. 2022, 230, 12. [Google Scholar] [CrossRef]
- Lu, Y.J.; Liu, X.C.; Liu, Y.J.; Wu, X.; Jiang, Y.; Liu, Z.; Lin, J.X.; Zhang, L.C. Corrosion behavior of novel titanium-based composite with engineering 3D artificial nacre-like structures. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107278. [Google Scholar] [CrossRef]
- Fang, Z.G.Z.; Paramore, J.D.; Sun, P.; Chandran, K.S.R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium—Past, present, and future. Int. Mater. Rev. 2018, 63, 407–459. [Google Scholar] [CrossRef]
- Yamanoglu, R. Pressureless Spark Plasma Sintering: A Perspective from Conventional Sintering to Accelerated Sintering Without Pressure. Powder Metall. Met. Ceram. 2019, 57, 513–525. [Google Scholar] [CrossRef]
- Eriksson, M.; Shen, Z.; Nygren, M. Fast densification and deformation of titanium powder. Powder Metall. 2005, 48, 231–236. [Google Scholar] [CrossRef]
- Crosby, K.; Shaw, L.L.; Estournes, C.; Chevallier, G.; Fliflet, A.W.; Imam, M.A. Enhancement in Ti-6Al-4V sintering via nanostructured powder and spark plasma sintering. Powder Metall. 2014, 57, 147–154. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, H.; Wang, T.; Huang, X.; Li, Y.; Wu, J.; Chen, H. High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 2013, 585, 408–414. [Google Scholar] [CrossRef]
- Muthuchamy, A.; Patel, P.; Rajadurai, M.; Chaurisiya, J.K.; Annamalai, A.R. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder. Mater. Werkst. Bauteile Forsch. Pruf. Anwend. 2018, 60, 283–288. [Google Scholar] [CrossRef]
- Fan, Z.; Huang, G.; Lu, Y.; Chen, Y.; Zeng, F.; Lin, J. Full compression response of FG-based scaffolds with varying porosity via an effective numerical scheme. Int. J. Mech. Sci. 2022, 223, 107294. [Google Scholar] [CrossRef]
- ISO 16429:2004; Implants for surgery—Measurements of open-circuit potential to assess corrosion behaviour of metallic implantable materials and medical devices over extended time periods. International Organization for Standardization: Geneva, Switzerland, 2004.
- GB/T 2591-2003; Experimental Method of Antibacterial Property and Antibacterial Effect. National Development and Reform Commission, PRC: Beijing, China, 2003.
- GB/T 4789.2; Total Colony Measurement. National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- Wei, L.; Qin, W. Corrosion mechanism of eutectic high-entropy alloy induced by micro-galvanic corrosion in sulfuric acid solution. Corros. Sci. J. Environ. Degrad. Mater. Its Control 2022, 206, 110525. [Google Scholar] [CrossRef]
- Hu, S.; Liu, R.; Liu, L.; Cui, Y.; Oguzie, E.E.; Wang, F. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy. Corros. Sci. 2020, 163, 108242.1–108242.11. [Google Scholar] [CrossRef]
- Dong, K.; Song, Y.; Chang, F.; Han, E.-H. Galvanic corrosion mechanism of Ti-Al coupling: The impact of passive films on the coupling effect. Electrochim. Acta 2023, 462, 142662. [Google Scholar] [CrossRef]
- Zhang, X.G. Galvanic Corrosion. In Uhlig’s Corrosion Handbook; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zhao, P.; Song, Y.; Dong, K.; Shan, D.; Han, E.H. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62. Mater. Corros. 2019, 70, 1745–1754. [Google Scholar] [CrossRef]
- Grosgogeat, B.; Reclaru, L.; Lissac, M.; Dalard, F. Measurement and evaluation of galvanic corrosion between titanium/Ti6A14V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials 1999, 20, 933. [Google Scholar] [CrossRef]
- Lee, C.; Kang, C.S.; Shin, K.S. Effect of galvanic corrosion between precipitate and matrix on corrosion behavior of As-cast magnesium-aluminum alloys. Met. Mater. Int. 2000, 6, 351–358. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Liu, Y.; Yu, C.; Zhang, X.; Liu, X. Improving mechanical properties and corrosion behavior of biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy through laser surface remelting. Surf. Coat. Technol. 2024, 490, 12. [Google Scholar] [CrossRef]
- Gan, Y.M.; Zhou, M.H.; Ji, C.; Huang, G.H.; Chen, Y.; Li, L.; Huang, T.T.; Lu, Y.J.; Lin, J.X. Tailoring the tribology property and corrosion resistance of selective laser melted CoCrMo alloys by varying copper content. Mater. Des. 2023, 228, 15. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.X.; Lu, Y.J.; Qin, S.J.; Huang, G.H.; Huang, T.T.; Lin, J.X. Effect of heat treatment on the corrosion resistance of selective laser melted Ti6Al4V3Cu alloy. J. Mater. Res. Technol. JMRT 2021, 12, 904–915. [Google Scholar] [CrossRef]
- Grimm, M.; Lohmüller, A.; Singer, R.F.; Virtanen, S. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys. Corros. Sci. 2019, 155, 195–208. [Google Scholar] [CrossRef]
- Osório, W.R.; Cremasco, A.; Andrade, P.N.; Garcia, A.; Caram, R.J.E.A. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim. Acta 2010, 55, 759–770. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Sun, Z.; Wang, H.; Ren, L.; Yang, K. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. J. Mater. Sci. Technol. 2019, 35, 2336–2344. [Google Scholar] [CrossRef]
Samples | Ecorr (V/SCE) | Icorr × 10−7 (A·cm−2) | Corrosion Rate (mpy) |
---|---|---|---|
Ti6Al4V | −0.31 ± 0.02 | 2.41 ± 0.21 | 0.069 ± 0.037 |
Ti-5Cu | −0.34 ± 0.01 | 1.93 ± 0.37 | 0.082 ± 0.011 |
TCCU-70 | −0.38 ± 0.03 | 1.58 ± 0.74 | 0.039 ± 0.063 |
TCCU-80 | −0.35 ± 0.02 | 1.69 ± 0.38 | 0.067 ± 0.007 |
TCCU-90 | −0.28 ± 0.04 | 1.83 ± 0.63 | 0.073 ± 0.005 |
Samples | Rs (Ω·cm2) | Rp (kΩ·cm2) | Y0 (μQ−1·sn·cm−2) | n |
---|---|---|---|---|
TC4 | 22.83 ± 2.37 | 242.16 ± 59.56 | 30.25 ± 3.70 | 0.915 ± 0.031 |
Ti-5Cu | 17.15 ± 2.68 | 232.72 ± 68.74 | 28.87 ± 2.59 | 0.824 ± 0.014 |
TCCU-70 | 27.12 ± 1.94 | 298.45 ± 52.48 | 27.01 ± 2.81 | 0.941 ± 0.025 |
TCCU-80 | 22.65 ± 2.43 | 254.25 ± 48.65 | 26.79 ± 3.62 | 0.929 ± 0.017 |
TCCU-90 | 19.76 ± 1.87 | 234.19 ± 43.62 | 32.64 ± 3.18 | 0.929 ± 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhao, Q.; Hong, R.; Mai, D.; Lu, Y.; Lin, J. Exploring Construction of Biomedical Ti6Al4V-Ti5Cu Composite Alloy with Interpenetrating Structure: Microstructure and Corrosion Resistance. Materials 2025, 18, 491. https://doi.org/10.3390/ma18030491
Zhou Y, Zhao Q, Hong R, Mai D, Lu Y, Lin J. Exploring Construction of Biomedical Ti6Al4V-Ti5Cu Composite Alloy with Interpenetrating Structure: Microstructure and Corrosion Resistance. Materials. 2025; 18(3):491. https://doi.org/10.3390/ma18030491
Chicago/Turabian StyleZhou, Yuan, Qing Zhao, Ruchen Hong, Dongyi Mai, Yanjin Lu, and Jinxin Lin. 2025. "Exploring Construction of Biomedical Ti6Al4V-Ti5Cu Composite Alloy with Interpenetrating Structure: Microstructure and Corrosion Resistance" Materials 18, no. 3: 491. https://doi.org/10.3390/ma18030491
APA StyleZhou, Y., Zhao, Q., Hong, R., Mai, D., Lu, Y., & Lin, J. (2025). Exploring Construction of Biomedical Ti6Al4V-Ti5Cu Composite Alloy with Interpenetrating Structure: Microstructure and Corrosion Resistance. Materials, 18(3), 491. https://doi.org/10.3390/ma18030491