A First-Principles Study on the Dislocation Properties of Face-Centered Cubic Metals
Highlights
- It is demonstrated that the edge dislocations are much easier to move than screw dislocations in Al, Ag, Ni, and Cu metals from the perspectives of the separation distances, the Peierls energy, and Peierls force;
- It is found that the separation distances of edge and screw dislocation in Al are too small to observe in experiment;
- The total dislocation energy surfaces ET (t, d) in Al, Ag, Ni, and Cu as a function of dislocation center t and partial separation d are discussed in detail.
Abstract
1. Introduction
2. Calculation Method and Theoretical Model
2.1. Calculation Method
2.2. The Generalized Stacking Fault Energy Surfaces
3. Results and Discussion
3.1. Generalized Stacking Fault Energy Surfaces
3.2. Dislocation Parameters of Al, Ag, Ni, and Cu
3.2.1. P-N Model
3.2.2. Dislocation Core Properties
4. Conclusions
- (1)
- Both types of dislocations split into two partials, with screw dislocations exhibiting multiple stable low-energy states, whereas edge dislocations possess only a single stable state.
- (2)
- The decomposition width of edge dislocations in Al, Ag, Cu, and Ni crystals is greater than that of screw dislocations. However, the Peierls energy and Peierls force associated with screw dislocations are higher than those of edge dislocations, suggesting that edge dislocations exhibit superior mobility and are therefore easier to move compared to screw dislocations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goryaeva, A.M.; Domain, C.; Chartier, A.; Dézaphie, A.; Swinburne, T.D.; Ma, K.; Loyer-Prost, M.; Creuze, J.; Marinica, M.-C. Compact A15 Frank-Kasper nano-phases at the origin of dislocation loops in face-centred cubic metals. Nat. Commun. 2023, 14, 3003. [Google Scholar] [CrossRef]
- Volterra, V. Sur l’équilibre des carps élastiques multiplement connexes. Ann. Sci. De L’école Norm. Supérieure 1907, 24, 401–517. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proc. R. Soc. A Math Phys. Eng. Sci. 1934, 145, 362–387. [Google Scholar]
- Polanyi, M. Über eine Art Gitterstörung die einen Kristall plastich machen könnte. Z. Für Phys. 1934, 89, 660–664. [Google Scholar] [CrossRef]
- Orowan, E. Zur Kristallplastizität: Iii. Über den Mechanismus des Gleitvorganges. Z. Für Phys. 1934, 89, 634–659. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Bingert, J.F.; Zhu, Y.T.; Liao, X.Z.; Valiev, R.Z.; Horita, Z.; Langdon, T.G.; Zhou, Y.Z.; Lavernia, E.J. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl. Phys. Lett. 2008, 92, 081903. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Cryst. 1999, 32, 992–1002. [Google Scholar] [CrossRef]
- Leonardi, A.; Scardi, P. Atomistic model of metal nanocrystals with line defects:contribution to diffraction line profile. Front. Mater. 2015, 1, 37. [Google Scholar] [CrossRef]
- Csiszar, G.; Li, X.-F.; Zilahi, G.; Balogh, L.; Ungar, T. Planar defects, dislocations, and coherently scattering-size in GdBaCuO high-T thin films determined by high resolution X-ray diffraction. J. Appl. Phys. 2013, 113, 033903. [Google Scholar] [CrossRef]
- Mryasov, O.N.; Gornostyrev, Y.N.; Freeman, A.J. Generalized stacking-fault energetics and dislocation properties: Compact versus spread unit-dislocation structures in TiAl and CuAu. Phys. Rev. B 1998, 58, 11927. [Google Scholar] [CrossRef]
- Woodward, C.; Trinkle, D.R.; Hector, L.G.; Olmsted, J.; Olmsted, D.L. Prediction of Dislocation Cores in Aluminum from Density Functional Theory. Phys. Rev. Lett. 2008, 100, 045507. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F. Lattice theory for structure of dislocations in a two-dimensional triangular crystal. Phys. Rev. B 2002, 65, 094111. [Google Scholar]
- Pulagam, S.S.R.; Dutta, A. Peierls–Nabarro modeling of twinning dislocations in fcc metals. Comput. Mater. Sci. 2022, 206, 111269. [Google Scholar] [CrossRef]
- Fan, D.; Zhang, Q.; Fan, T.; He, M.; Liu, L. A New Anti-Alias Model of Ab Initio Calculations of the Generalized Stacking Fault Energy in Face-Centered Cubic Crystals. Crystals 2023, 13, 461. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Wu, X. Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls–Nabarro equation. Phys. Scr. 2011, 83, 045604. [Google Scholar] [CrossRef]
- Hartford, J.; Sydow, B.; Wahnstrom, G.; Lundqvist, B.I. Peierls barriers and stresses for edge dislocations in Pd and Al calculated from firrst principles. Phys. Rev. B 1998, 58, 2487–2496. [Google Scholar] [CrossRef]
- Brandl, C.; Derlet, P.M.; Van Swygenhoven, H. General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys. Rev. B 2007, 76, 054124. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Wu, X.; Gan, L.; Wei, Q. Temperature effects on the generalized planar fault energies and twinnablities. Comput. Mater. Sci. 2014, 88, 124–130. [Google Scholar] [CrossRef]
- Kibey, S.; Liu, J.B.; Johnson, D.D.; Sehitoglu, H. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 2007, 55, 6843–6851. [Google Scholar] [CrossRef]
- Zhao, D.; Løvvik, O.M.; Marthinsen, K.; Li, Y. Impurity effect of Mg on the generalized planar fault energy of Al. J. Mater. Sci. 2016, 51, 6552–6568. [Google Scholar] [CrossRef]
- Shang, S.L.; Wang, W.Y.; Wang, Y.; Du, Y.; Zhang, J.X.; Patel, A.D.; Liu, Z.K.J. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: A first-principles study of shear deformation. J. Phys. Condens. Matter 2012, 24, 155402. [Google Scholar] [CrossRef] [PubMed]
- Peierls, R. The size of a dislocation. Proc. Phys. Soc. 1940, 52, 34–37. [Google Scholar] [CrossRef]
- Jahnátek, M.; Hafner, J.; Krajčí, M. Shear deformation, ideal strength, and stacking fault formation of fcc metals: A density-functional study of Al and Cu. Phys. Rev. B 2009, 79, 224103. [Google Scholar] [CrossRef]
- Ogata, S.; Li, J.; Hirosaki, N.; Shibutani, Y.; Yip, S. Ideal shear strain of metals and ceramics. Phys. Rev. B 2004, 70, 104104. [Google Scholar] [CrossRef]
- Carlotti, G.; Fioretto, D.; Socino, G.; Rodmacq, B.; Pelosin, V. Interface effects and elastic constants of Ag/Ni superlattices studied by Brillouin scattering. J. Appl. Phys. 1992, 71, 4897–4902. [Google Scholar] [CrossRef]
- Lu, G.; Kioussis, N.; Bulatovb, V.V.; Kaxiras, E. Dislocation core properties of aluminum: A first-principles study. Mater. Sci. Eng. A 2001, 309, 142–147. [Google Scholar] [CrossRef]
- Lu, G.; Kioussis, N. Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 2000, 62, 3099–3108. [Google Scholar] [CrossRef]
- Schoeck, G. The core structure of dislocations in Al: A critical assessment. Mater. Sci. Eng. A 2002, 333, 390–396. [Google Scholar] [CrossRef]
- Lu, G.; Tadmor, E.B.; Kaxiras, E. From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals. Phys. Rev. B 2006, 73, 024108. [Google Scholar] [CrossRef]
- Höllerbauer, W.; Karnthaler, H.P. Beitrage zur elektronen-mikroskopischen. Direktabb. Vor Oberflachen 1981, 14, 361. [Google Scholar]
- Bulatov, V.V.; Richmond, O.; Glazov, M.V. An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Mater. 1999, 47, 3507–3514. [Google Scholar] [CrossRef]
- Schoeck, G. The Peierls model: Progress and limitations. Mater. Sci. Eng. A 2005, 400–401, 7–17. [Google Scholar] [CrossRef]
- Schoeck, G.; Krystian, M. The peierls energy and kink energy in fcc metals. Philos. Mag. 2005, 85, 949–966. [Google Scholar] [CrossRef]
- Ruvimov, S.; Scheerschmidt, K. Burgers vector determination in TEM by using the dislocation parity analysis. Phys. Status Solidi 1994, 141, 269–284. [Google Scholar] [CrossRef]
- Yasi, J.A.; Nogaret, T.; Trinkle, D.R.; Qi, Y.; Hector, L.G., Jr.; Curtin, W.A. Basal and prism dislocation cores in magnesium: Comparison of first-principles and embedded-atom-potential methods predictions. Model. Simul. Mater. Sci. Eng. 2009, 17, 055012. [Google Scholar] [CrossRef]
- Zhou, S.J.; Carlsson, A.E.; Thomson, R. Dislocation core-core interaction and Peierls stress in a model hexagonal lattice. Phys. Rev. B 1994, 49, 6451–6456. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S.S. Tensile Strength of Whiskers. J. Appl. Phys. 1956, 27, 1484–1491. [Google Scholar] [CrossRef]
γI | γU | |
---|---|---|
Al | 129.2 * | 189.4 * |
133 [13], 158 [18], 153 [19], 146 [20], 142 [21], 130 [22], 142.4 [23] | 189 [13], 225 [18], 178 [20], 185 [21], 162 [22], 177.4 [23] | |
Ag | 24.6 * | 122.3 * |
26 [13], 18 [22] | 119 [13], 133 [22] | |
Cu | 40.1 * | 175.2 * |
42 [13], 43 [18], 51 [19], 38 [20], 39 [21], 41 [22], 40.5 [23] | 171 [13], 175 [18], 164 [20], 177 [21], 180 [22], 161 [23] | |
Ni | 137.9 * | 292.4 * |
129 [13], 137 [20], 122 [21], 110 [22], 132 [24] | 280 [13], 278 [20], 299 [21], 273 [22], 305 [24] |
Al | Ag | Cu | Ni | |
---|---|---|---|---|
C11 | 102.2 * | 112.3 * | 175.9 * | 255.7 * |
111 [26],114 [27] | 132 [27] | 180 [26], 167 [28], | 233 [28] | |
C12 | 65.2 * | 82.7 * | 126.4 * | 176.4 * |
56 [26],62 [27] | 97 [27], 91 [28] | 124 [26], 124.9 [23], 124 [28] | 154 [28] | |
C44 | 27.6 * | 34.1 * | 72.8 * | 114.1 * |
32 [26] | 57 [28] | 84 [26],76 [28] | 128 [28] | |
μ | 23.9 * | 26.4 * | 53.6 * | 84.3 * |
28.8 [29] | ||||
B | 77.5 * | 92.5 * | 142.9 * | 202.8 * |
104 [28] | 138 [28] | 180.4 [28] | ||
ν | 0.36 * | 0.37 * | 0.33 * | 0.32 * |
0.344 [29] | ||||
Ke (GPa) | 5.9 * | 6.7 * | 12.8 * | 19.7 * |
Ks (GPa) | 3.8 * | 4.2 * | 8.5 * | 13.4 * |
Edge (Å) | Screw (Å) | |
---|---|---|
Al | 7.6 * | 3.5 * |
10.3 [18], 7.2 [19], 3.5 [30], 7.4 [31], 5.6 [32], 8.0 [33] | 2.1 [30], 4.9 [34] | |
Ag | 53.7 * | 21.6 * |
Cu | 47.4 * | 21.6 * |
Ni | 19.2 * | 9.5 * |
Edge | Screw | |||||||
---|---|---|---|---|---|---|---|---|
Al | Cu | Ag | Ni | Al | Cu | Ag | Ni | |
PF (MPa) | 2.699 *3.2 [30] | 0.078 *0.003 [39] | 0.684 *0.82 [40] | 0.049 * | 324.140 *256 [30] | 57.959 * | 103.142 * | 171.888 * |
PE (meV/Å) | 0.044 * | 0.001 * | 0.010 * | 0.001 * | 3.761 * | 0.591 * | 1.149 * | 0.885 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Han, Y.; Fan, T. A First-Principles Study on the Dislocation Properties of Face-Centered Cubic Metals. Materials 2025, 18, 485. https://doi.org/10.3390/ma18030485
Liu L, Han Y, Fan T. A First-Principles Study on the Dislocation Properties of Face-Centered Cubic Metals. Materials. 2025; 18(3):485. https://doi.org/10.3390/ma18030485
Chicago/Turabian StyleLiu, Linghong, Yingqian Han, and Touwen Fan. 2025. "A First-Principles Study on the Dislocation Properties of Face-Centered Cubic Metals" Materials 18, no. 3: 485. https://doi.org/10.3390/ma18030485
APA StyleLiu, L., Han, Y., & Fan, T. (2025). A First-Principles Study on the Dislocation Properties of Face-Centered Cubic Metals. Materials, 18(3), 485. https://doi.org/10.3390/ma18030485