Porous Metals: Preparation, Microstructure, Properties and Performance
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.W.; Wadley, H.N.G.; Gibson, L.J. Metal Foams: A Design Guide, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Degischer, H.P.; Kriszt, B. (Eds.) Handbook of Cellular Metals: Production, Processing, Applications; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Banhart, J. Light-metal foams—History of innovation and technological challenges. Adv. Eng. Mat. 2013, 15, 82–111. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Dhakad, S.K. Preparation of metal foam by different methods: A review. Mater. Today Proc. 2020, 26, 1784–1790. [Google Scholar] [CrossRef]
- Zhao, B.; Gain, A.K.; Ding, W.; Zhang, L.; Li, X.; Fu, Y. A review on metallic porous materials: Pore formation, mechanical properties, and their applications. Int. J. Adv. Manuf. Technol. 2017, 95, 2641–2659. [Google Scholar] [CrossRef]
- Nisa, S.U.; Pandey, S.; Pandey, P. A review of the compressive properties of closed-cell aluminum metal foams. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 2022, 237, 441–454. [Google Scholar] [CrossRef]
- Kalpakoglou, T.; Yiatros, S. Metal foams: A review for mechanical properties under tensile and shear stress. Front. Mater. 2022, 9, 998673. [Google Scholar] [CrossRef]
- Madgule, M.; Sreenivasa, C.G.; Borgaonkar, A.V. Aluminium metal foam production methods, properties and applications—A review. Mater. Today Proc. 2023, 77, 673–679. [Google Scholar] [CrossRef]
- Gao, L.; Yang, H.; Chen, X.; Tang, W.; Huang, X.; Liu, Z. The development of porous metallic materials: A short review of fabrication, characteristics, and applications. Phys. Scr. 2023, 98, 122001. [Google Scholar] [CrossRef]
- Chen, D.; Gao, K.; Yang, J.; Zhang, L. Functionally graded porous structures: Analyses, performances, and applications—A Review. Thin-Walled Struct. 2023, 191, 111046. [Google Scholar] [CrossRef]
- Hassan, A.; Alnaser, I.A. A Review of different manufacturing methods of metallic foams. ACS Omega 2024, 9, 6280–6295. [Google Scholar] [CrossRef]
- Fu, W.; Li, Y. Fabrication, Processing, properties, and applications of closed-cell aluminum foams: A review. Materials 2024, 17, 560. [Google Scholar] [CrossRef]
- Andrews, E.; Sanders, W.; Gibson, L.J. Compressive and tensile behaviour of aluminum foams. Mater. Sci. Eng. A 1998, 270, 113–124. [Google Scholar] [CrossRef]
- McCullough, K.Y.G.; Fleck, N.A.; Ashby, M.F. Uniaxial stress–strain behaviour of aluminium alloy foams. Acta Mater. 1999, 47, 2323–2330. [Google Scholar] [CrossRef]
- McCullough, K.Y.G.; Fleck, N.A.; Ashby, M.F. Toughness of aluminium alloy foams. Acta Mater. 1999, 47, 2331–2343. [Google Scholar] [CrossRef]
- Amsterdam, E.; De Hosson, J.T.M.; Onck, P.R. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading. Acta Mater. 2006, 54, 4465–4472. [Google Scholar] [CrossRef]
- Gong, S.; Li, Z.; Zhao, Y.Y. An extended Mori–Tanaka model for the elastic moduli of porous materials of finite size. Acta Mater. 2011, 59, 6820–6830. [Google Scholar] [CrossRef]
- Han, F.S.; Seiffert, G.; Zhao, Y.Y.; Gibbs, B. Acoustic absorption behaviour of an open-celled aluminium foam. J. Phys. D Appl. Phys. 2003, 36, 294–302. [Google Scholar] [CrossRef]
- Ma, X.; Peyton, A.J.; Zhao, Y.Y. Eddy current measurements of the electrical conductivity and magnetic permeability of porous metals. NDT E Int. 2006, 39, 562–568. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, T.; Zhao, Y.; Zhang, W.; Zhu, J. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. J. Acoust. Soc. Am. 2012, 132, 1436–1449. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhao, Y. Heat transfer coefficient of porous copper with homogeneous and hybrid structures in active cooling. J. Mater. Res. 2013, 28, 2545–2553. [Google Scholar] [CrossRef]
- Diao, K.; Zhang, L.; Zhao, Y. Measurement of tortuosity of porous Cu using a diffusion diaphragm cell. Measurement 2017, 110, 335–338. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y. Effects of electrochemical reaction and surface morphology on electroactive surface area of porous copper manufactured by Lost Carbonate Sintering. RSC Adv. 2017, 7, 26392–26400. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, Y. Effect of flow regime on convective heat transfer in porous copper manufactured by lost carbonate sintering. Int. J. Heat Fluid Flow 2019, 80, 108482. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y. Cyclic voltammetry measurements of electroactive surface area of porous nickel: Peak current and peak charge methods and diffusion layer effect. Mater. Chem. Phys. 2019, 233, 60–67. [Google Scholar] [CrossRef]
- Aramesh, M.; Shabani, B. Metal foams application to enhance the thermal performance of phase change materials: A review of experimental studies to understand the mechanisms. J. Energy Storage 2022, 50, 104650. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y. Porous nickel electrode for highly sensitive non-enzyme electrochemical glucose detection. Coatings 2023, 13, 290. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y. Effects of processing conditions and fine powder loading on real and electroactive surface areas of porous nickel manufactured by lost carbonate sintering. Powder Metall. 2023, 66, 537–547. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Liu, C.; Zhang, Y.; Yan, L.; Jiang, J.; Liu, E.; Xu, F. Metal foams for the interfering energy conversion: Electromagnetic wave absorption, shielding, and sound attenuation. J. Mater. Sci. Tech. 2025, 215, 258–282. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). J. Porous Mat. 2017, 25, 537–554. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Sun, D.X. A novel sintering-dissolution process for manufacturing Al foams. Scr. Mater. 2001, 44, 105–110. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Fung, T.; Zhang, L.P.; Zhang, F.L. Lost carbonate sintering process for manufacturing metal foams. Scr. Mater. 2005, 52, 295–298. [Google Scholar] [CrossRef]
- Zhu, P.; Wu, Z.; Zhao, Y. Hierarchical porous Cu with high surface area and fluid permeability. Scr. Mater. 2019, 172, 119–124. [Google Scholar] [CrossRef]
- Chen, L.Y.; Liang, S.X.; Liu, Y.; Zhang, L.C. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R Rep. 2021, 146, 100648. [Google Scholar] [CrossRef]
- Rodriguez-Contreras, A.; Punset, M.; Calero, J.A.; Gil, F.J.; Ruperez, E.; Manero, J.M. Powder metallurgy with space holder for porous titanium implants: A review. J. Mat. Sci. Technol. 2021, 76, 129–149. [Google Scholar] [CrossRef]
- Kumar, N.; Bharti, A.; Prasad, D. Analysis of production techniques for metal foams of iron and steel. Powder Metall. Metal Ceram. 2022, 61, 287–297. [Google Scholar] [CrossRef]
- Changdar, A.; Chakraborty, S.S.; Li, Y.; Wen, C. Laser additive manufacturing of aluminum-based stochastic and nonstochastic cellular materials. J. Mater. Sci. Tech. 2024, 183, 89–119. [Google Scholar] [CrossRef]
- Kertesz, J.; Kovacs, T.A. Friction investigation of closed-cell aluminium foam during radial-constrained test. Materials 2024, 17, 3344. [Google Scholar] [CrossRef]
- Shen, H.; Suzuki, A.; Takata, N.; Kobashi, M. Enhancing capillary pressure of porous aluminum wicks by controlling bi-porous structure using different-sized nacl space holders. Materials 2024, 17, 4729. [Google Scholar] [CrossRef]
- Chu, X.; Wang, T.; Yang, D.; Peng, X.; Hou, S.; Chen, S.; Lu, G.; Jiao, M.; Wu, Y.; Rempel, A.A.; et al. Homogeneous age-hardening of large-sized Al-Sc foams via micro-alloying with Zr and Ti. Materials 2024, 17, 1269. [Google Scholar] [CrossRef]
- Xiao, J.; He, Y.; Ma, W.; Yue, Y.; Qiu, G. Effects of the Space holder shape on the pore structure and mechanical properties of porous Cu with a wide porosity range. Materials 2024, 17, 3008. [Google Scholar] [CrossRef]
- Yang, X.; Li, K.; Li, J.; Sheng, Z.; Liu, Y. Aggregation–growth and densification behavior of titanium particles in molten Mg-MgCl2 system. Materials 2024, 17, 2904. [Google Scholar] [CrossRef]
- Olmos, L.; González-Pedraza, A.S.; Vergara-Hernández, H.J.; Bouvard, D.; López-Cornejo, M.S.; Servín-Castañeda, R. Development of tailored porous Ti6Al4V Materials by extrusion 3d printing. Materials 2025, 18, 389. [Google Scholar] [CrossRef]
- Villa-Tapia, J.I.; Vergara-Hernández, H.J.; Olmos, L.; Arteaga, D.; Téllez-Martínez, J.S.; Solorio-García, V.M.; Mihalcea, E. Investigation of Pore size effect on the infiltration process of Ti6Al4V/xAg metal matrix composites. Materials 2025, 18, 939. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, J.; Cui, J.; Zhang, Y.; Wang, Y.; Zhang, Y.; Han, Y.; Sun, M. Energy absorption characteristics of composite material with fiber–foam metal sandwich structure subjected to gas explosion. Materials 2024, 17, 1596. [Google Scholar] [CrossRef]
- Zhao, T. Effortless fabrication of nanofused HKUST-1 for Enhanced catalytic efficiency in the cyanosilylation of aldehyd. Materials 2025, 18, 1131. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, Y.; Zhang, Y.; Wu, M. Numerical study on fluid flow behavior and heat transfer performance of porous media manufactured by a space holder method. Materials 2024, 17, 2695. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y. Porous Metals: Preparation, Microstructure, Properties and Performance. Materials 2025, 18, 5518. https://doi.org/10.3390/ma18245518
Zhao Y. Porous Metals: Preparation, Microstructure, Properties and Performance. Materials. 2025; 18(24):5518. https://doi.org/10.3390/ma18245518
Chicago/Turabian StyleZhao, Yuyuan. 2025. "Porous Metals: Preparation, Microstructure, Properties and Performance" Materials 18, no. 24: 5518. https://doi.org/10.3390/ma18245518
APA StyleZhao, Y. (2025). Porous Metals: Preparation, Microstructure, Properties and Performance. Materials, 18(24), 5518. https://doi.org/10.3390/ma18245518
