Fracture Resistance of Endodontically Treated Teeth Restored with Preheated Short Fiber-Reinforced Composite and Preheated Composite Resin
Abstract
1. Introduction
2. Materials and Methods
2.1. Declaration of Ethics
2.2. Research Design
2.3. Specimen Preparation
2.4. Restorative Procedure
2.5. Testing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SFRC | Short Fiber-Reinforced Composite |
| MOD | Mesio-Occluso-Distal |
| CEJ | Cementoenamel Junction |
| ANOVA | Analysis of Variance |
References
- Bonilla, E.D.; Hayashi, M.; Pameijer, C.H.; Le, N.V.; Morrow, B.R.; Garcia-Godoy, F. The effect of two composite placement techniques on fracture resistance of MOD restorations with various resin composites. J. Dent. 2020, 101, 103348. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Paranhos, M.P.; Spohr, A.M.; Oshima, H.M.; Carlini, B.; Burnett, L.H., Jr. Fracture resistance of root filled molar teeth restored with glass fibre bundles. Int. Endod. J. 2010, 43, 356–362. [Google Scholar] [CrossRef]
- Özyürek, T.; Ülker, Ö.; Demiryürek, E.; Yılmaz, F. The effects of endodontic access cavity preparation design on the fracture strength of endodontically treated teeth: Traditional versus conservative preparation. J. Endod. 2018, 44, 800–805. [Google Scholar] [CrossRef]
- Atalay, C.; Yazici, A.R.; Horuztepe, A.; Nagas, E.; Ertan, A.; Ozgunaltay, G. Fracture resistance of endodontically treated teeth restored with bulk fill, bulk fill flowable, fiber-reinforced, and conventional resin composite. Oper. Dent. 2016, 41, E131–E140. [Google Scholar] [CrossRef] [PubMed]
- Yasa, B.; Arslan, H.; Yasa, E.; Akcay, M.; Hatirli, H. Effect of novel restorative materials and retention slots on fracture resistance of endodontically treated teeth. Acta Odontol. Scand. 2016, 74, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kınıkoğlu, İ.; Türkoğlu Kayacı, Ş.; Arslan, H. Short fiber reinforced composite on fracture strength of immature permanent anterior teeth with simulated regenerative endodontic procedures: An in vitro study. J. Clin. Pediatr. Dent. 2023, 47, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Volom, A.; Vincze-Bandi, E.; Sáry, T.; Alleman, D.; Forster, A.; Jakab, A.; Braunitzer, G.; Garoushi, S.; Fráter, M. Fatigue performance of endodontically treated molars reinforced with different fiber systems. Clin. Oral Investig. 2023, 27, 3211–3220. [Google Scholar] [CrossRef]
- Bijelic-Donova, J.; Garoushi, S.; Lassila, L.V.; Keulemans, F.; Vallittu, P.K. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J. Dent. 2016, 52, 70–78. [Google Scholar] [CrossRef]
- Selvaraj, H.; Krithikadatta, J.; Shrivastava, D.; Onazi, M.A.A.; Algarni, H.A.; Munaga, S.; Hamza, M.O.; Saad Al-Fridy, T.; Teja, K.V.; Janani, K.; et al. Fracture resistance of endodontically treated posterior teeth restored with fiber reinforced composites: A systematic review. BMC Oral Health 2023, 23, 566. [Google Scholar] [CrossRef]
- Scotti, N.; Forniglia, A.; Tempesta, R.M.; Comba, A.; Saratti, C.M.; Pasqualini, D.; Alovisi, M.; Berutti, E. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars. J. Dent. 2016, 53, 82–87, Correction in J. Dent. 2017, 57, e2. [Google Scholar] [CrossRef]
- Fidancioğlu, Y.D.; Alkurt Kaplan, S.; Mohammadi, R.; Gönder, H.Y. Three-dimensional finite element analysis (FEM) of tooth ttress: The impact of cavity design and restorative materials. Appl. Sci. 2025, 15, 9677. [Google Scholar] [CrossRef]
- Escobar, L.B.; Pereira da Silva, L.; Manarte-Monteiro, P. Fracture resistance of fiber-reinforced composite restorations: A systematic review and meta-analysis. Polymers 2023, 15, 3802. [Google Scholar] [CrossRef] [PubMed]
- Sen Yavuz, B.; Kaya, R.; Kodaman Dokumacigil, N.; Ozgur, E.G.; Bekiroglu, N.; Kargul, B. Clinical performance of short fiber reinforced composite and glass hybrid on hypomineralized molars: A 36-month randomized split-mouth study. J. Dent. 2024, 144, 104919. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.K.; Hatem, M.; Lassila, L.V.J.; Vallittu, P.K. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomater. Odontol. Scand. 2015, 1, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Forster, A.; Keresztúri, M.; Braunitzer, G.; Nagy, K. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material. J. Dent. 2014, 42, 1143–1150. [Google Scholar] [CrossRef]
- Lempel, E.; Őri, Z.; Szalma, J.; Lovász, B.V.; Kiss, A.; Tóth, Á.; Kunsági-Máté, S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent. Mater. 2019, 35, 217–228. [Google Scholar] [CrossRef]
- Favoreto, M.W.; Carneiro, T.S.; Ñaupari-Villasante, R.; Cordeiro, D.C.; Cochinski, G.D.; do Nascimento, T.V.P.M.; de Paris Matos, T.; Bandeca, M.C.; Reis, A.; Loguercio, A.D. Clinical performance of preheating thermoviscous composite resin for non-carious cervical lesions restoration: A 24-month randomized clinical trial. J. Dent. 2024, 144, 104930. [Google Scholar] [CrossRef]
- Abdulmajeed, A.A.; Donovan, T.E.; Cook, R.; Sulaiman, T.A. Effect of preheating and fatiguing on mechanical properties of bulk-fill and conventional composite resin. Oper. Dent. 2020, 45, 387–395. [Google Scholar] [CrossRef]
- Lopes, L.C.P.; Terada, R.S.S.; Tsuzuki, F.M.; Giannini, M.; Hirata, R. Heating and preheating of dental restorative materials: A systematic review. Clin. Oral Investig. 2020, 24, 4225–4235. [Google Scholar] [CrossRef]
- Bhopatkar, J.; Ikhar, A.; Chandak, M.; Patel, A.; Agrawal, P. Examining the impact of preheating on the fracture toughness and microhardness of composite resin: A systematic review. Cureus 2023, 15, e47117. [Google Scholar] [CrossRef]
- Gade, V.J.; Asani, R.; Meshram, P.V.; Wankhede, J.S.; Chandwani, N.D.; Chaware, P.; Chaudhary, Y. An in vitro evaluation of fracture resistance of maxillary premolars with large MOD cavity restored with preheated and direct composite system. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 206–212. [Google Scholar]
- Abdulhameed, O.H.; Abdul-Ameer, Z.M. Fracture resistance of weakened premolars restored with different preheated bulk fill composites: A comparative in vitro study. Int. Netw. Nat. Sci. 2018, 13, 237–247. [Google Scholar]
- Plotino, G.; Grande, N.M.; Isufi, A.; Ioppolo, P.; Pedullà, E.; Bedini, R.; Gambarini, G.; Testarelli, L. Fracture strength of endodontically treated teeth with different access cavity designs. J. Endod. 2017, 43, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Forster, A.; Braunitzer, G.; Tóth, M.; Szabó, B.P.; Fráter, M. In vitro fracture resistance of adhesively restored molar teeth with different MOD cavity dimensions. J. Prosthodont. 2019, 28, e325–e331. [Google Scholar] [CrossRef]
- ISO/TR 11405; Dental Materials—Guidance on Testing of Adhesion to Tooth Structure. International Standards Organization: Geneva, Switzerland, 1994; Volume 1, pp. 1–14.
- Eapen, A.M.; Amirtharaj, L.V.; Sanjeev, K.; Mahalaxmi, S. Fracture resistance of endodontically treated teeth restored with two different fiber-reinforced composite and two conventional composite resin core buildup materials: An in vitro study. J. Endod. 2017, 43, 1499–1504. [Google Scholar] [CrossRef]
- Ertas, H.; Sagsen, B.; Arslan, H.; Er, O.; Ertas, E.T. Effects of physical and morphological properties of roots on fracture resistance. Eur. J. Dent. 2014, 8, 261–264. [Google Scholar] [CrossRef]
- Ozsevik, A.S.; Yildirim, C.; Aydin, U.; Culha, E.; Surmelioglu, D. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth. Aust. Endod. J. 2016, 42, 82–87. [Google Scholar] [CrossRef]
- Garlapati, T.G.; Krithikadatta, J.; Natanasabapathy, V. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material: An in vitro study. J. Prosthodont. Res. 2017, 61, 464–470. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Vincze-Bandi, E.; Volom, A.; Braunitzer, G.; Szabó, P.B.S.; Garoushi, S.; Forster, A. Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities. Polymers 2021, 13, 2040. [Google Scholar] [CrossRef]
- Almeida, L.N.; Mendes, G.A.M.; Favarão, I.N.; Kasuya, A.V.B.; Borges, M.G.; Menezes, M.D.S.; Fonseca, R.B. Influence of preheating and post-curing on a novel fiber-reinforced composite post material. Braz. Oral Res. 2018, 32, e97. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef]
- Verghese, R.P.; Nair, R.S.; Mathai, V.; Christaine Angelo, J.M.; Christopher, S.R.; Ravi, V.V. A comparative evaluation of preheat treatment, postcure heat treatment, and combined heat treatment on degree of conversion of a bulk-fill composite: An in vitro study. J. Conserv. Dent. 2023, 26, 207–211. [Google Scholar]
- Gönder, H.Y.; Mohammadi, R.; Harmankaya, A.; Yüksel, İ.B.; Fidancıoğlu, Y.D.; Karabekiroğlu, S. Teeth restored with bulk–fill composites and conventional resin composites; Investigation of stress distribution and fracture lifespan on enamel, dentin, and restorative materials via three-dimensional finite element analysis. Polymers 2023, 15, 1637. [Google Scholar] [CrossRef]



| Material | Type | Composition | Manufacturer | Batch No |
|---|---|---|---|---|
| Scotchbond Etchant Gel | Etching agent | Phosphoric acid, synthetic amorphous silica, water | 3M ESPE, St. Paul, MN, USA | N414370 |
| Clearfil SE Bond | Bonding agent | Primer: MDP, HEMA, hydrophilic dimethacrylate, photo-initiator, water Bond: MDP, HEMA, Bis-GMA, hydrophobic dimethacrylate, photo-initiators, silanated colloidal silica | Kuraray, Tokyo, Japan | C60001 |
| Estelite Posterior | Micro-hybrid composite | Bis-GMA, TEGDMA, Bis-MPEPP | Tokuyama Dental, Tokyo, Japan | 243E67 |
| Ever X Posterior | Short fiber-reinforced composite | Bis-GMA, PMMA, TEGDMA, Salinated E-glass Fiber, Barium Glass | GC Corporation, Tokyo, Japan | 2003061 |
| Groups | N | Mean ± SD (N) | Median (25th–75th Percentile) |
|---|---|---|---|
| Positive Control | 20 | 2598.72 ± 863.76 | 2377.0 (1897.3–3418.1) a |
| Negative Control | 20 | 299.59 ± 98.50 | 270.3 (229.7–382.1) d |
| Composite | 20 | 1596.95 ± 303.54 | 1606.0 (1416.3–1812.2) b |
| SFRC | 20 | 2020.85 ± 551.30 | 1897.7 (1581.3–2393.5) b |
| Preheated Composite | 20 | 1648.21 ± 322.11 | 1555.6 (1378.1–1922.5) b |
| Preheated SFRC | 20 | 1668.84 ± 423.34 | 1528.1 (1303.5–1973.1) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özüdoğru, S.; Tok, S.; Düzyol, M.; Erdem, R.Z.; Arslan, H. Fracture Resistance of Endodontically Treated Teeth Restored with Preheated Short Fiber-Reinforced Composite and Preheated Composite Resin. Materials 2025, 18, 5145. https://doi.org/10.3390/ma18225145
Özüdoğru S, Tok S, Düzyol M, Erdem RZ, Arslan H. Fracture Resistance of Endodontically Treated Teeth Restored with Preheated Short Fiber-Reinforced Composite and Preheated Composite Resin. Materials. 2025; 18(22):5145. https://doi.org/10.3390/ma18225145
Chicago/Turabian StyleÖzüdoğru, Semanur, Sevda Tok, Mustafa Düzyol, Rahime Zeynep Erdem, and Hakan Arslan. 2025. "Fracture Resistance of Endodontically Treated Teeth Restored with Preheated Short Fiber-Reinforced Composite and Preheated Composite Resin" Materials 18, no. 22: 5145. https://doi.org/10.3390/ma18225145
APA StyleÖzüdoğru, S., Tok, S., Düzyol, M., Erdem, R. Z., & Arslan, H. (2025). Fracture Resistance of Endodontically Treated Teeth Restored with Preheated Short Fiber-Reinforced Composite and Preheated Composite Resin. Materials, 18(22), 5145. https://doi.org/10.3390/ma18225145

