Arc Welding Processes as Practical Solutions to Join Ceramics: Progress and Future Outlook
Abstract
1. Introduction
2. Arc-Based Techniques for Welding Ceramic Materials

| Ceramic System | Arc Welding Technique | Comments | Ref. | 
|---|---|---|---|
| ZrB2–SiC and ZrB2–SiC–B4C–YAG | GTAW (with ZrB2–SiC–B4C–YAG as filler material) | Increase in microhardness across the joint was noticed due to increase in volume fraction of SiC and B4C. No evidence of cracks was identified in the ZrB2–SiC–B4C–YAG joint. Manual welding was conducted. | [34] | 
| SiC-ZrB2-ZrC | GTAW | A minimum ZrB2 content of 20 vol% is required for welding of SiC-ZrB2-ZrC ceramics due to narrow range of weldable compositions that form ZrC as a primary phase. | [35] | 
| SiC-ZrB2-ZrC | GTAW | Different compositions were welded using distinct techniques, and the mechanical performance of the joints was assessed at different temperatures. | [36] | 
| SiC-ZrB2 | PAW | ||
| TiB2-TiC | PAW | Successful welding of ceramics was noted, yet large crystals and pores developed within the FZ, which was hinted to hinder the mechanical performance of the welded joint. | [37] | 
| ZrB2-ZrC | PAW | Full-penetration joints were obtained with the added variant of using a graphite support, which causes carbon to diffuse to the FZ. The presence of pores was evidenced at the boundary between the FZ and the HAZ. | [38] | 
| ZrB2-ZrC and ZrC–TiC | PAW | Mechanical performance was assessed in order to obtain optimal welding conditions/parameters. | [39] | 
| SiC–ZrB2–ZrC | PAW | Optimization of welding parameters took place, and the solidification path of the FZ was identified. SiC content varied across the FZ, decreasing from the fusion boundary toward the center. | [40] | 
| ZrB2-SiC-ZrC and Mo-based metals | PAW (Dissimilar arc welding) | Dissimilar welding between ceramic and metal was successfully conducted, although defects were unavoidable. | [28] | 
2.1. Gas Tungsten Arc Welding of Ceramics
2.2. Plasma Arc Welding of Ceramics
3. Discussion and Future Outlook
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almansoori, A.; Balázsi, K.; Balázsi, C. Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics. Nanomaterials 2024, 14, 1881. [Google Scholar] [CrossRef]
- Golla, B.R.; Mukhopadhyay, A.; Basu, B.; Thimmappa, S.K. Review on Ultra-High Temperature Boride Ceramics. Prog. Mater. Sci. 2020, 111, 100651. [Google Scholar] [CrossRef]
- Scheithauer, U.; Schwarzer-Fischer, E.; Sieder-Katzmann, J.; Propst, M.; Abel, J.; Gottlieb, L.; Weingarten, S.; Rebenklau, L.; Barth, H.; Bach, C. Additive Manufacturing of Ceramic Single and Multi-Material Components–A Groundbreaking Innovation for Space Applications Too? Acta Astronaut. 2024, 221, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.; Ola, O.; Xia, Y.; Zhu, Y. Porous Ceramics: Light in Weight but Heavy in Energy and Environment Technologies. Mater. Sci. Eng. R Rep. 2021, 143, 100589. [Google Scholar] [CrossRef]
- Ma, C.; Li, T.; Wang, Y.; Zhang, Y.; Cao, Q.; Gong, X.; Zeng, X.; Cheng, X.; Liu, K. Tribological Behavior and Mechanism of High-Temperature Self-Lubricating Wear-Resistant Composite Coatings on 3D-Printed SiC Ceramic Surfaces. J. Eur. Ceram. Soc. 2025, 45, 117473. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, W.; Liu, Y.; Gao, W.; Liu, L.; Xu, D.; Chen, J. Solid Particle Erosion and Wear Behavior of (TiCrVZrNb)N High-Entropy Nitride Ceramics. Int. J. Refract. Met. Hard Mater. 2025, 130, 107165. [Google Scholar] [CrossRef]
- An, D.; Wei, Y.; Kumar, A.; Ma, S.; Shao, M.; Zheng, H.; Wang, Y.; Xu, P. Dynamic Analysis of Full-Ceramic Bearing-Rotor System under Thermally Induced Loosening in Aerospace Applications. Eng. Fail. Anal. 2024, 159, 108080. [Google Scholar] [CrossRef]
- Sun, H.; Zou, B.; Chen, W.; Xue, K.; Huang, C. Chatter Failure Comparison for High-Speed Milling of Aerospace GH4099 with Silicon Nitride Ceramic End Mills: A Laboratory Scale Investigation. Eng. Fail. Anal. 2024, 157, 107891. [Google Scholar] [CrossRef]
- Sharath, B.N.; Madhu, K.S.; Pradeep, D.G.; Madhu, P.; Premkumar, B.G.; Karthik, S. Effects of Tertiary Ceramic Additives on the Micro Hardness and Wear Characteristics of Al2618 + Si3N4-B4C-Gr Hybrid Composites for Automotive Applications. J. Alloys Metall. Syst. 2023, 3, 100014. [Google Scholar] [CrossRef]
- Bhakuni, H.; Muley, A.V.; Ruchika. Fabrication, Testing & Analysis of Particulate Ceramic Matrix Composite for Automotive Brake Pad Application. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Hlina, J.; Reboun, J.; Janda, M. Investigation of Cooling Capability of Ceramic Substrates for Power Electronics Applications. Appl. Therm. Eng. 2024, 247, 123110. [Google Scholar] [CrossRef]
- Akhlidej, D.; Mesrar, M.; Elbasset, A.; Abdi, F.; Lamcharfi, T.D.; Echatoui, N.S. BaTi1-XFexO3-δ Ceramics: Assessing Structural, Microstructural, Morphology and Dielectric Properties for Electronics Application. Ceram. Int. 2025, 51, 29944–29964. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, C.; Han, S.; Xu, C.; Li, S.; Feng, Z.; Ling, Y.; Cai, Z.; Feng, P. Boosting Energy Storage Enhancement in ZrO2-Coated BaTiO3 Ceramics via a Sol-Gel Method. J. Power Sources 2025, 654, 237809. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Cheng, N. High Energy Storage Properties in High-Entropy Ceramics with Sandwich Structure. Ceram. Int. 2025; in press. [Google Scholar] [CrossRef]
- Marín-Cortés, S.; Serrano, A.; Enríquez, E.; Fernández, J.F. Dense Ceramics by Cold Reaction Sintering Using 95% Powdered Construction and Demolition Waste and Sodium Silicate. Constr. Build. Mater. 2024, 451, 138917. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Zeng, Q.; Zhou, C. Sustainable Reuse of Household Ceramic Wastes as a Substitute of Cement and Natural Sand in Construction Materials: Mechanical, Transport, and Microstructural Properties. Case Stud. Constr. Mater. 2025, 22, e04708. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Li, P.; Wang, B.; Wang, P.; Zhong, Z.; Lin, J.; Cao, J.; Qi, J. Unconventional Joining Techniques of Ceramics by Rapid Heat Sources: A Review. J. Eur. Ceram. Soc. 2023, 43, 5748–5762. [Google Scholar] [CrossRef]
- Penilla, E.H.; Devia-Cruz, L.F.; Wieg, A.T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J.E. Ultrafast Laser Welding of Ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef]
- Liao, K.H.; Su, C.Y.; Yu, M.Y. Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded W–10Cu Composite/AlN Ceramic Using Ni–P and Ti Interlayers. J. Alloys Compd. 2021, 867, 159050. [Google Scholar] [CrossRef]
- Cao, J.; Guo, X.; Si, X.; Li, C.; Liu, J.; Qi, J.; Feng, J. Evolution and Formation Mechanism of the Interfacial Microstructure on Diffusion Bonded Joints of Single Crystal Ni-Based Superalloys to Ti3AlC2 Ceramic with Ni Interlayer. Vacuum 2021, 185, 110027. [Google Scholar] [CrossRef]
- Selvaraj, S.K.; Srinivasan, K.; Deshmukh, J.; Agrawal, D.; Mungilwar, S.; Jagtap, R.; Hu, Y.C. Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review. Materials 2020, 13, 5805. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, G.; Wang, W.; Zhao, Y.; He, R.; Tan, C. Brazing of High Entropy Ceramic to Nb Using a CoFeCrNiCu High-Entropy Alloy Filler: Interfacial Microstructure and Mechanism. J. Mater. Res. Technol. 2025, 36, 9198–9207. [Google Scholar] [CrossRef]
- Hosseini, N.; Valenza, F.; Chlup, Z.; Gambaro, S.; Malinverni, C.; Casalegno, V.; Kovalčíková, A.; Tatarková, M.; Dlouhý, I.; Tatarko, P. Wetting and Brazing of (HfTaZrNbTi)B2 and (HfTaZrNbTi)C High-Entropy Ceramics by AgCuTi Filler. Open Ceram. 2025, 22, 100792. [Google Scholar] [CrossRef]
- Sivaprahasam, D.; Sujitha, T.; Gowtham, U.; Jayachandran, B.; Gopalan, R. Microstructure and Heat Transfer Characteristics of Active Brazed Ceramic–Metal Joints. Ceram. Int. 2021, 47, 16133–16140. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Yang, H.; Wen, Q.; Yang, Q.; Gui, L.; Zhao, Q.; Li, E. The Latest Process and Challenges of Microwave Dielectric Ceramics Based on Pseudo Phase Diagrams. J. Adv. Ceram. 2021, 10, 885–932. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.K.; Yu, D.S.; Sun, D.Q.; Li, H.M. A Method for Producing Ceramic/Stainless Steel Composites by Laser Welding with Calculation Optimisation. Mater. Sci. Technol. 2023, 39, 147–157. [Google Scholar] [CrossRef]
- Jarman, J.D.; Fahrenholtz, W.G.; Hilmas, G.E.; Watts, J.L.; Huang, T. Fusion Welding of Refractory Metals and ZrB2-SiC-ZrC Ceramics. J. Eur. Ceram. Soc. 2022, 42, 5195–5207. [Google Scholar] [CrossRef]
- Uday, M.B.; Ahmad-Fauzi, M.N.; Noor, A.M.; Rajoo, S. Current Issues and Problems in the Joining of Ceramic to Metal. In Joining Technologies; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Hilmas, G.E.; Fahrenholtz, W.G.; Watts, J.L.; Brown-Shaklee, H.J. Ceramic Welds, and a Method for Producing the Same. US20120164411A1, 6 May 2014. [Google Scholar]
- Wang, X.; Ma, X.; Liao, C.; Zhao, B. High Temperature Processing of Tungsten Slag. In 11th International Symposium on High-Temperature Metallurgical Processing; Minerals, Metals and Materials Series; Springer: Cham, Switzerland, 2020; pp. 289–294. [Google Scholar] [CrossRef]
- Wu, C.S.; Wang, L.; Ren, W.J.; Zhang, X.Y. Plasma Arc Welding: Process, Sensing, Control and Modeling. J. Manuf. Process 2014, 16, 74–85. [Google Scholar] [CrossRef]
- Harris, I.D. Plasma Arc Welding. In Welding Fundamentals and Processes; ASM International: Almere, The Netherlands, 2011; pp. 359–364. [Google Scholar] [CrossRef]
- Krishnarao, R.V.; Madhusudhan Reddy, G. Gas Tungsten Arc Welding of ZrB2–SiC Based Ultra High Temperature Ceramic Composites. Def. Technol. 2015, 11, 188–196. [Google Scholar] [CrossRef]
- Jarman, J.D.; Fahrenholtz, W.G.; Hilmas, G.E.; Watts, J.L.; King, D.S. Characterization of Fusion Welded Ceramics in the SiC-ZrB2-ZrC System. J. Eur. Ceram. Soc. 2021, 41, 2255–2262. [Google Scholar] [CrossRef]
- Jarman, J.D.; Fahrenholtz, W.G.; Hilmas, G.E.; Watts, J.L.; King, D.S. Mechanical Properties of Fusion Welded Ceramics in the SiC-ZrB2 and SiC-ZrB2-ZrC Systems. J. Eur. Ceram. Soc. 2022, 42, 2107–2117. [Google Scholar] [CrossRef]
- King, D.S.; Hilmas, G.E.; Fahrenholtz, W.G. Plasma Arc Welding of TiB2–20 Vol% TiC. J. Am. Ceram. Soc. 2014, 97, 56–59. [Google Scholar] [CrossRef]
- King, D.S.; Hilmas, G.E.; Fahrenholtz, W.G. Plasma Arc Welding of ZrB2–20 Vol% ZrC Ceramics. J. Eur. Ceram. Soc. 2014, 34, 3549–3557. [Google Scholar] [CrossRef]
- King, D.S.; Hilmas, G.; Fahrenholtz, W. Mechanical Behavior and Applications of Plasma Arc Welded Ceramics. Int. J. Appl. Ceram. Technol. 2016, 13, 41–49. [Google Scholar] [CrossRef]
- King, D.S.; Watts, J.L.; Cissel, K.S.; Kadhim, A.H.; Hilmas, G.E.; Fahrenholtz, W.G. Solidification of Welded SiC–ZrB2–ZrC Ceramics. J. Am. Ceram. Soc. 2018, 101, 4331–4339. [Google Scholar] [CrossRef]




| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.G.; Shen, J.; Oliveira, J.P. Arc Welding Processes as Practical Solutions to Join Ceramics: Progress and Future Outlook. Materials 2025, 18, 4940. https://doi.org/10.3390/ma18214940
Lopes JG, Shen J, Oliveira JP. Arc Welding Processes as Practical Solutions to Join Ceramics: Progress and Future Outlook. Materials. 2025; 18(21):4940. https://doi.org/10.3390/ma18214940
Chicago/Turabian StyleLopes, J. G., J. Shen, and J. P. Oliveira. 2025. "Arc Welding Processes as Practical Solutions to Join Ceramics: Progress and Future Outlook" Materials 18, no. 21: 4940. https://doi.org/10.3390/ma18214940
APA StyleLopes, J. G., Shen, J., & Oliveira, J. P. (2025). Arc Welding Processes as Practical Solutions to Join Ceramics: Progress and Future Outlook. Materials, 18(21), 4940. https://doi.org/10.3390/ma18214940
 
        



 
       