Advances in Welding Process and Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, T.; Wang, K.; Lei, Y. A Review of Welding Process for UNS S32750 Super Duplex. Materials 2024, 17, 5215. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Taiwade, R.V. Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—A Review. J. Manuf. Process. 2017, 25, 134–152. [Google Scholar] [CrossRef]
- Migiakis, K.; Daniolos, N.; Papadimitriou, G.D. Plasma Keyhole Welding of Uns S32760 Super Duplex Stainless Steel: Microstructureand Mechanical Properties. Mater. Manuf. Process. 2010, 25, 598–605. [Google Scholar] [CrossRef]
- Li, T.; Wang, K.; Lei, Y. Effects of Nitrogen on Microstructure and Properties of SDSS, 2507 Weld Joints by Gas Focusing Plasma Arc Welding. Materials 2024, 17, 5375. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Liu, N. Effect of Welding Current on Corrosion Resistance of Heat-Affected Zones of HDR Duplex Stainless Steel. Materials 2024, 17, 1986. [Google Scholar] [CrossRef]
- Kazuyoshi, S.; Shotaro, Y.; Hiroyuki, H. Effect of Ferrite/Austenite Phase Transformation on 475 °C Embrittlement in Duplex Stainless Steel Weld. Key Eng. Mater. 2023, 966, 1–9. [Google Scholar] [CrossRef]
- Andres, A.; Antonio, R.; Correa, K.R. Using kinetics to avoid sigma phase formation on hyper duplex stainless weld cladding. Sci. Technol. Weld. Join. 2023, 28, 885–893. [Google Scholar] [CrossRef]
- Sravanthi, G.; Ambuj, S. Study of Heat Input Effects on the Microstructure of Lean Duplex 2101 Shielded Metal Arc Weld and Its Effect on Mechanical Properties, Corrosion, and Scratch Behavior. Metallogr. Microstruct. Anal. 2023, 12, 834–848. [Google Scholar]
- Noga, P.; Skrzekut, T.; Wędrychowicz, M.; Węglowski, M.S.; Wiewióra, M. The Influence of Various Welding Methods on the Microstructure and Mechanical Properties of 316Ti Steel. Materials 2024, 17, 1681. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Cheng, X.; He, B.; Wang, H.; Huang, Z. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater. Sci. Eng. A 2017, 703, 567–577. [Google Scholar] [CrossRef]
- Laik, S.; Cebulski, J.; Rzychon, T. Investigations of the influence of thermal cycle and welding technology on the properties and structure of welded joints of duplex steel. Mater. Eng. 2005, 26, 112–116. [Google Scholar]
- Vashishtha, H.; Taiwade, R.V.; Sharma, S.; Patil, A.P. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J. Manuf. Process. 2017, 25, 49–59. [Google Scholar] [CrossRef]
- Prasad, K.S.; Rao, C.S.; Rao, D.N. Study on weld quality characteristics of micro plasma arc welded austenitic stainless steels. Procedia Eng. 2014, 97, 752–757. [Google Scholar] [CrossRef]
- Taban, E.; Kaluc, E. Plasma arc welding of AISI316Ti (EN 1.4571) stainless steel: Mechanical, microstructural, corrosion aspects. Mater. Test. 2014, 56, 294–299. [Google Scholar] [CrossRef]
- Mokhtarishirazabad, M.; McMillan, M.; Vijayanand, V.D.; Simpson, C.; Agius, D.; Truman, C.; Knowles, D.; Mostafavi, M. Predicting residual stress in a 316L electron beam weld joint incorporating plastic properties derived from a crystal plasticity finite element model. Int. J. Press. Vessel. Pip. 2023, 201, 104868. [Google Scholar] [CrossRef]
- Hedhibi, A.C.; Touileb, K.; Djoudjou, R.; Ouis, A.; Alrobei, H.; Ahmed, M.M.Z. Mechanical Properties and Microstructure of TIG and ATIG Welded 316L Austenitic Stainless Steel with Multi-Components Flux Optimization Using Mixing Design Method and Particle Swarm Optimization (PSO). Materials 2021, 14, 7139. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, W.; Xu, C.; Li, J.; Lu, J. Effect of Process Parameters on Welding Residual Stress of 316L Stainless Steel Pipe. Materials 2024, 17, 2201. [Google Scholar] [CrossRef]
- Wanhill, R.J.H. Chapter 15—Aerospace Applications of Aluminum–Lithium Alloys. In Aluminum-Lithium Alloys; Eswara Prasad, N., Gokhale, A.A., Wanhill, R.J.H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 503–535. ISBN 978-0-12-401698-9. [Google Scholar]
- Sarfaraz, Z.; Awan, Y.R.; Saeed, H.A.; Khan, R.; Wieczorowski, M.; Din, N.A. Residual Stress in Friction Stir Welding of Dissimilar Aluminum Alloys: A Parametric Study. Materials 2025, 18, 316. [Google Scholar] [CrossRef]
- Hu, Y.; Pei, W.; Ji, H.; Yu, R.; Liu, S. Tungsten Inert Gas Welding of 6061-T6 Aluminum Alloy Frame: Finite Element Simulation and Experiment. Materials 2024, 17, 1039. [Google Scholar] [CrossRef]
- Arif, S.; Samad, A.; Muaz, M.; Khan, A.U.; Khan, M.E.; Ali, W.; Ahmad, F. Design, Development, and Testing of Machine Learning Models to Estimate Properties of Friction Stir Welded Joints. Materials 2025, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, P.; Yao, J.; Wang, J.; Mao, Q.; Yang, Y. Optimization of Plasma Welding Sequence and Performance Verification for a Fork Shaft: A Comparison of Same-Direction and Reverse-Direction Welding. Materials 2025, 18, 288. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, G.; Pu, X.; Deng, D. Influence of welding sequence on residual stress distribution and deformation in Q345 steelH-section butted-welded joint. J. Mater. Res. Technol. 2021, 13, 144–153. [Google Scholar] [CrossRef]
- Long, W.; Zhou, X.; Du, B.; Cheng, X.; Su, G.; Chen, L. Enhancing the Lap Shear Performance of Resistance-Welded GF/PP Thermoplastic Composite by Modifying Metal Heating Elements with Silane Coupling Agent. Materials 2024, 17, 4944. [Google Scholar] [CrossRef]
- Du, B.; Li, Q.; Zheng, C.; Wang, S.; Gao, C.; Chen, L. Application of Lightweight Structure in Automobile Bumper Beam: A Review. Materials 2023, 16, 967. [Google Scholar] [CrossRef]
- Chandgude, S.; Salunkhe, S. In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polym. Compos. 2021, 42, 2678–2703. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.; Behera, A.; Menezes, P.L. Role of composite materials in automotive sector: Potential applications. In Advances in Engine Tribology; Springer: Singapore, 2022; pp. 193–217. [Google Scholar]
- Stavrov, D.; Bersee, H. Resistance welding of thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2005, 36, 39–54. [Google Scholar] [CrossRef]
- Bădicioiu, M.; Călțaru, M.M.; Petrescu, M.G. Engineering Application of Hardbanding Technology in the Petroleum Industry. Materials 2024, 17, 6075. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codrean, C.; Opriș, C.; Feier, A. Advances in Welding Process and Materials. Materials 2025, 18, 4904. https://doi.org/10.3390/ma18214904
Codrean C, Opriș C, Feier A. Advances in Welding Process and Materials. Materials. 2025; 18(21):4904. https://doi.org/10.3390/ma18214904
Chicago/Turabian StyleCodrean, Cosmin, Carmen Opriș, and Anamaria Feier. 2025. "Advances in Welding Process and Materials" Materials 18, no. 21: 4904. https://doi.org/10.3390/ma18214904
APA StyleCodrean, C., Opriș, C., & Feier, A. (2025). Advances in Welding Process and Materials. Materials, 18(21), 4904. https://doi.org/10.3390/ma18214904

