Natural and Modified Zeolites as Adsorbents for Nitrogen and Phosphorus Control in Eutrophic Freshwater Bodies: A Comprehensive Review on Freshwater Applications of the Last 10 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Inclusion/Exclusion Criteria
2.2. Data Manipulation
3. The Modification Procedures and the Adsorption Mechanism
3.1. Different Modifications of Zeolites
3.2. Adsorption Mechanism
4. Discussion
4.1. Comparison of Zeolite Adsorption Capacity Related to Zeolites’ Different Origins
4.2. Comparison of Ammonium and Orthophosphate Performance per Particle Size
4.3. Comparison of Natural and Modified Zeolite Adsorption Efficiency Compared to the pH Levels
4.4. Comparison of Zeolites’ Ammonium and Orthophosphate Adsorption Capacity
| Citation | Pilot/Lab/Field Study | Adsorption Capacity of NH4+-N (mg/g) | Adsorption Capacity of PO43−-P (mg/g) | Adsorbent Dosage (mg/L) | PO43-P Aquatic Solution (mg/L) | NH4+-N Aquatic Solution (mg/L) | HRT (h) | Origin | Particle Size | pH | Zeolite Form |
|---|---|---|---|---|---|---|---|---|---|---|---|
| [49] | Lab | 21.3 | 1000 | 1–5000 | Germany | 1–2.5 mm 8–16 mm 16–32 mm | 7 | Natural zeolite (CLP85+) | |||
| [67] | Lab | 7.64 | 0.86 | 1000 | 0–40 | 0–30 | 2 | 4–9 | Lanthanum hydroxide (La-F4A) 4AZ | ||
| [8] | Lab | 4.23 | 55.68 | 7000 | 5–100 | 5–100 | China | Powder | 6.35 | EL-MNP@zeolite | |
| [24] | Lab | 28.9 | 400 | 0.05–5 | 3 | Bulgaria | - | 7.2 | BePhosTM (BFeLaHA) | ||
| [32] | Lab | 1.54 | 3600 | 3 | Ethiopia | Z-Al/Cu | |||||
| [40] | Lab | 36.87 | 36.88 | 100 | 0.1–100 | 0.1–100 | 24 | Slovakia | <0.0105 | 7 | ZeoPhos (ZCaFeHA) |
| [80] | Pilot | 1000 | 0.1–10 | 0.5–1 cm | Lanthanum/aluminum hydroxide zeolite (LAH-Z) | ||||||
| [69] | Lab | 16.6 | 6.62 | 2000 | 20–500 | 20–500 | 6 | - | - | 7 | NaOH-activated and lanthanum-impregnated zeolite (NLZ) |
4.5. The Influence of Environmental Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A New Wine in an Old Bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Zamparas, M.; Kapsalis, V.C.; Kalavrouziotis, I.K. Eutrophication Control: The Shift to Invasive Methods Managing the Internal Nutrient Loads. A Bibliometric Analysis. Desalin. Water Treat. 2022, 267, 177–185. [Google Scholar] [CrossRef]
- Zhou, H.D.; Wang, C.Y.; Wang, Q.; Xu, B.X.; Zhu, G. Efficiency, Mechanism and Application Prospect of Ammonium Adsorption and Desorption over a Sodium-Acetate-Modified Synthetic Zeolite. RSC Adv. 2024, 14, 17843–17854. [Google Scholar] [CrossRef]
- Mavromati, E.; Kagalou, I.; Kemitzoglou, D.; Apostolakis, A.; Seferlis, M.; Tsiaoussi, V. Relationships Among Land Use Patterns, Hydromorphological Features and Physicochemical Parameters of Surface Waters: WFD Lake Monitoring in Greece. Environ. Process. 2018, 5, 139–151. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J. Chitosan Modified Zeolite Molecular Sieve Particles as a Filter for Ammonium Nitrogen Removal from Water. Int. J. Mol. Sci. 2020, 21, 2383. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Liakou, P.; Zacharias, I.; Biliani, I.; Liakou, P.; Biliani, I. A Review of the Status of Surface European Waters 19 Years after WFD Introduction. In Proceedings of the Protection and Restoration of the Environment XV; Yannopoulos, P.C., Polychronis, E., Zacharias, I., Ioannis, M., Korfiatis, G., Koutsospyros, A., Christodoulatos, C., Eds.; Springer: Patras, Greece, 2020; Volume 7, pp. 1023–1039. [Google Scholar]
- Xu, Q.; Li, W.; Ma, L.; Cao, D.; Owens, G.; Chen, Z. Simultaneous Removal of Ammonia and Phosphate Using Green Synthesized Iron Oxide Nanoparticles Dispersed onto Zeolite. Sci. Total Environ. 2020, 703, 135002. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Deng, L.; Song, Y.; Qi, W.; Hu, C. Nutrient Thresholds Required to Control Eutrophication: Does It Work for Natural Alkaline Lakes? Water 2022, 14, 2674. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, L.; Bao, L.; Li, Y.; Li, X. Critical Nutrient Thresholds Needed to Control Eutrophication and Synergistic Interactions between Phosphorus and Different Nitrogen Sources. Environ. Sci. Pollut. Res. 2016, 23, 21008–21019. [Google Scholar] [CrossRef]
- Schweitzer, L.; Noblet, J. Chapter 3.6—Water Contamination and Pollution. In Green Chemistry; Török, B., Dransfield, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–290. ISBN 9780128092705. [Google Scholar] [CrossRef]
- Jilbert, T.; Couture, R.M.; Huser, B.J.; Salonen, K. Preface: Restoration of Eutrophic Lakes: Current Practices and Future Challenges. Hydrobiologia 2020, 847, 4343–4357. [Google Scholar] [CrossRef]
- Pereira, A.C.; Mulligan, C.N. Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review. Water 2023, 15, 2270. [Google Scholar] [CrossRef]
- Shaheen, U.; Ye, Z.L.; Abass, O.K.; Zamel, D.; Rehman, A.; Zhao, P.; Huang, F. Evaluation of Potential Adsorbents for Simultaneous Adsorption of Phosphate and Ammonium at Low Concentrations. Microporous Mesoporous Mater. 2024, 379, 113301. [Google Scholar] [CrossRef]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J.G. Characterization and Utilization of Natural Zeolites in Technical Applications. BHM Berg.-Hüttenmänn. Monatshefte 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Kukobat, R.; Škrbić, R.; Massiani, P.; Baghdad, K.; Launay, F.; Sarno, M.; Cirillo, C.; Senatore, A.; Salčin, E.; Atlagić, S.G. Thermal and Structural Stability of Microporous Natural Clinoptilolite Zeolite. Microporous Mesoporous Mater. 2022, 341, 112101. [Google Scholar] [CrossRef]
- Stepova, K.; Fediv, I.; Mažeikienė, A.; Šarko, J.; Mažeika, J. Adsorption of Ammonium Ions and Phosphates on Natural and Modified Clinoptilolite: Isotherm and Breakthrough Curve Measurements. Water 2023, 15, 1933. [Google Scholar] [CrossRef]
- Cieśla, J.; Franus, W.; Franus, M.; Kedziora, K.; Gluszczyk, J.; Szerement, J.; Jozefaciuk, G. Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials 2019, 12, 3213. [Google Scholar] [CrossRef]
- Han, M.; Wang, Y.; Zhan, Y.; Lin, J.; Bai, X.; Zhang, Z. Efficiency and Mechanism for the Control of Phosphorus Release from Sediment by the Combined Use of Hydrous Ferric Oxide, Calcite and Zeolite as a Geo-Engineering Tool. Chem. Eng. J. 2022, 428, 131360. [Google Scholar] [CrossRef]
- Guaya, D.; Cobos, H.; Camacho, J.; López, C.M.; Valderrama, C.; Cortina, J.L. LTA and FAU-X Iron-Enriched Zeolites: Use for Phosphate Removal from Aqueous Medium. Materials 2022, 15, 5418. [Google Scholar] [CrossRef] [PubMed]
- Saifuddin, M.; Kim, S.; Aziz, A.; Kim, K.S. Mechanistic Study of Phosphorus Adsorption onto Iron Z-A: Spectroscopic and Experimental Approach. Appl. Sci. 2019, 9, 4897. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Hernández-Maldonado, A.J.; Chen, Z. Guidelines for Rational Design of High-Performance Absorbents: A Case Study of Zeolite Adsorbents for Emerging Pollutants in Water. Green Energy Environ. 2017, 2, 363–369. [Google Scholar] [CrossRef]
- Vasanthakumar, A.K.; Moodley, K.G.; Dass, A.; Gengan, R.M.; Ali, D.; Alarifi, S.A.; Chandrasekaran, M.; Gao, Y. Ionic Liquid Covered Iron-Oxide Magnetic Nanoparticles Decorated Zeolite Nanocomposite for Excellent Catalytic Reduction and Degradation of Environmental Toxic Organic Pollutants and Dyes. J. Mol. Liq. 2021, 342, 117492. [Google Scholar] [CrossRef]
- Zamparas, M.; Kyriakopoulos, G.L.; Drosos, M.; Kapsalis, V.C.; Kalavrouziotis, I.K. Novel Composite Materials for Lake Restoration: A New Approach Impacting on Ecology and Circular Economy. Sustainability 2020, 12, 3397. [Google Scholar] [CrossRef]
- Stocker, K.; Ellersdorfer, M. Phosphate Fixation and P Mineralogy on Natural and Ca-Modified Zeolites During Simultaneous Nutrient Removal. Water. Air. Soil Pollut. 2022, 233, 41. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Le, T.T.; Phan, P.T.; Nguyen, N.H. Preparation, Characterization, and Application of Novel Ferric Oxide-Amine Material for Removal of Nitrate and Phosphate in Water. J. Chem. 2020, 2020, 8583543. [Google Scholar] [CrossRef]
- Biliani, I.; Tsavatopoulou, V.; Zacharias, I. Comparative Study of Ammonium and Orthophosphate Removal Efficiency with Natural and Modified Clay-Based Materials, for Sustainable Management of Eutrophic Water Bodies. Sustainability 2024, 16, 10214. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, C.; Sun, Y.; Ma, C. Effect and Mechanism of Modification Treatment on Ammonium and Phosphate Removal by Ferric-Modified Zeolite. Environ. Technol. 2019, 40, 1959–1968. [Google Scholar] [CrossRef]
- Li, X.; Xie, Q.; Chen, S.; Xing, M.; Guan, T.; Wu, D. Inactivation of Phosphorus in the Sediment of the Lake Taihu by Lanthanum Modified Zeolite Using Laboratory Studies. Environ. Pollut. 2019, 247, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kuang, Y.; Chen, J.; Wu, D. Competitive Adsorption of Phosphate and Dissolved Organic Carbon on Lanthanum Modified Zeolite. J. Colloid Interface Sci. 2020, 574, 197–206. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Xie, Q.; Zhu, Y.; Wu, D. Synthesis of Zeolite and Aluminum-Modified Zeolite from Lake Sediment for Simultaneous Immobilization of Cationic and Anionic Pollutants in Lakes. J. Environ. Chem. Eng. 2023, 11, 111467. [Google Scholar] [CrossRef]
- Asmellash, T.; Ayele, M.T. Phosphate Removal Using Natural and Al/Cu Modified Ethiopian Zeolites. Cogent Eng. 2022, 9. [Google Scholar] [CrossRef]
- Putri, M.I.; Saefumillah, A.; Bakri, R. Zeolite from Zirconium-Modified Fly Ash Waste for Absorption of Phosphate Compounds in Waters. J. Kim. Val. 2023, 9, 13–21. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, H.; Dong, Y.; He, Y. Anion Effect and Mechanism of Sodium Modified Clinoptilolite for Ammonia Nitrogen Removal from Aqueous Solution. Environ. Eng. Sci. 2018, 35, 710–719. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M.; Ding, T.; Xu, L.; Lee, S.S. Ammonium Removal Using a Calcined Natural Zeolite Modified with Sodium Nitrate. J. Hazard. Mater. 2020, 393, 122481. [Google Scholar] [CrossRef]
- Abelta, G.A.; Qadri, L.A.; Febrina, M.; Rajak, A.; Maulana, S.; Asagabaldan, M.A.; Taher, T. Enhanced Ammonium Adsorption from Aqueous Solutions Using Ethylenediaminetetra-Acetic Acid (EDTA) Modified Lampung (Indonesia) Natural Zeolite: Isotherm, Kinetic, and Thermodynamic Studies. Sci. Technol. Indones. 2024, 9, 224–234. [Google Scholar] [CrossRef]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.; Ye, C.; Wang, J.; Wei, W.; Deng, Y. Research Progress on Ecological Models in the Field of Water Eutrophication: CiteSpace Analysis Based on Data from the ISI Web of Science Database. Ecol. Modell. 2019, 410, 108779. [Google Scholar] [CrossRef]
- Ashfaq, M.H.; Shahid, S.; Javed, M.; Iqbal, S.; Hakami, O.; Aljazzar, S.O.; Fatima, U.; Elkaeed, E.B.; Pashameah, R.A.; Alzahrani, E.; et al. Controlled Growth of TiO2/Zeolite Nanocomposites for Simultaneous Removal of Ammonium and Phosphate Ions to Prevent Eutrophication. Front. Mater. 2022, 9, 1007485. [Google Scholar] [CrossRef]
- Biliani, I.; Zacharias, I. Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters. Water 2025, 17, 786. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Y.; Li, Y.; Qu, F.; Wu, D.; Kong, H. Synthesis of Zeolite/Hydrous Lanthanum Oxide Composite from Coal Fly Ash for Efficient Phosphate Removal from Lake Water. Microporous Mesoporous Mater. 2016, 222, 226–234. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. A Comprehensive Review on Novel Zeolite-Based Adsorbents for Environmental Pollutant. J. Hazard. Mater. Adv. 2025, 17, 100617. [Google Scholar] [CrossRef]
- Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. Adsorption of Ammonium by Different Natural Clay Minerals: Characterization, Kinetics and Adsorption Isotherms. Appl. Clay Sci. 2018, 159, 83–93. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Dawood, A.S.; Zhu, J. Simultaneous Removal of NH4+ and PO43− from Simulated Reclaimed Waters by Modified Natural Zeolite. Preparation, Characterization and Thermodynamics. Environ. Prot. Eng. 2021, 43, 73–92. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Saravia, M.; Olave, J.; Arias, C.; Alarcon, E.; Valdes, H. Potential Application of Chilean Natural Zeolite as a Support Medium in Treatmentwetlands for Removing Ammonium and Phosphate from Wastewater. Water 2020, 12, 1156. [Google Scholar] [CrossRef]
- Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J.L. Simultaneous Phosphate and Ammonium Removal from Aqueous Solution by a Hydrated Aluminum Oxide Modified Natural Zeolite. Chem. Eng. J. 2015, 271, 204–213. [Google Scholar] [CrossRef]
- Eberle, S.; Börnick, H.; Stolte, S. Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. Water 2022, 14, 939. [Google Scholar] [CrossRef]
- Biliani, I.; Papadopoulou, E.; Zacharias, I. Evaluating Zeolites of Different Origin for Eutrophication Control of Freshwater Bodies. Sustainability 2025, 17, 7120. [Google Scholar] [CrossRef]
- Rais, A.; Vandenabeele, D.; Doppelhammer, N.; Asselman, K.; Wangermez, W.; Kirschhock, C.; Breynaert, E. Ion Exchange Selectivity Governs Phase Selection in Zeolite Synthesis. Mater. Horiz. 2025. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, Y.; Lin, J.; Wu, X.; Wang, Y.; Zhao, Y. Simultaneous Control of Nitrogen and Phosphorus Release from Sediments Using Iron-Modified Zeolite as Capping and Amendment Materials. J. Environ. Manag. 2019, 249, 109369. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, Q.; Buyang, S.; Cui, H.; Zhang, S. Enrichment of Bioavailable Phosphorus in Fine Particles When Sediment Resuspension Hinders the Ecological Restoration of Shallow Eutrophic Lakes. Sci. Total Environ. 2020, 710, 135672. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, Z.; Wang, G.; Xian, J.; Li, T.; Pu, Y.; Jia, Y.; Zhou, W.; Cheng, Z.; Zhang, S.; et al. Simultaneous Removal of Ammonium and Phosphate in Aqueous Solution Using Chinese Herbal Medicine Residues: Mechanism and Practical Performance. J. Clean. Prod. 2021, 313, 127945. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Leng, H.; Cui, H.; Zuo, Y.; An, B.; Gao, Y.; Liang, Z.; Liang, H.; Zhou, X.; et al. Two-Dimensional Mg-ZIF Nanosheets: Toward High-Efficiency Adsorption of Ammonium Nitrogen Pollutants in Aquatic Environments. Sep. Purif. Technol. 2025, 378, 134772. [Google Scholar] [CrossRef]
- Wei, J.; Long, X.; Wang, J.; Tang, Z.; Wang, T.; Kang, H.; Liang, S. Preparation of Calcium Cross-Linked Nano-Fe3O4 Modified Zeolite Microspheres for Cu2+ Adsorption from Wastewater. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 1021–1030. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Dai, H.; Lu, X.; Peng, L.; Tan, X.; Shi, L.; Fahim, R. Preparation and Application of Modified Zeolites as Adsorbents in Wastewater Treatment. Water Sci. Technol. 2017, 2017, 621–635. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Geological Survey Mineral Commodity Summaries 2021: Sand and Gravel (Industrial); U.S. Geological Survey: Reston, VA, USA, 2021; ISBN 9781411343986.
- Abed, T.H.; Stefan, D.S.; Berger, D.C.; Marinescu, N.C.; Stefan, M. Performance Evaluation of a Romanian Zeolite: A Sustainable Material for Removing Ammonium Ions from Water. Sustainability 2024, 16, 7888. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, A.; Liu, Y.; Liu, Z.; Liu, X.; Yang, L.; Yang, Z. Adsorption Mechanism of High-Concentration Ammonium by Chinese Natural Zeolite with Experimental Optimization and Theoretical Computation. Water 2022, 14, 2413. [Google Scholar] [CrossRef]
- Copetti, D.; Finsterle, K.; Marziali, L.; Stefani, F.; Tartali, G.; Douglas, G.; Reitzel, K.; Spears, B.M.; Winfield, I.J.; Crosa, G.; et al. Eutrophication Management in Surface Waters Using Lanthanum Modified Betonite a Review. Water Res. 2015, 97, 162–174. [Google Scholar] [CrossRef]
- Marzi, M.; Kazemian, H.; Bradshaw, C. Study on Phosphate Removal from Aqueous Solutions Using Magnesium-Ammonium- and Zirconium-Modified Zeolites: Equilibrium, Kinetic, and Fixed-Bed Column Study. Environ. Monit. Assess. 2023, 195, 826. [Google Scholar] [CrossRef] [PubMed]
- Putra, R.N.; Lee, Y.H. Entrapment of Micro-Sized Zeolites in Porous Hydrogels: Strategy to Overcome Drawbacks of Zeolite Particles and Beads for Adsorption of Ammonium Ions. Sep. Purif. Technol. 2020, 237, 116351. [Google Scholar] [CrossRef]
- Yadav, V.; Kumar, L.; Saini, N.; Yadav, M.; Singh, N.; Murugasen, V.; Varathan, E. Effective Removal of Ammonia from Water Using Pre-Treated Clinoptilolite Zeolite-A Detailed Study. Water. Air. Soil Pollut. 2023, 234, 435. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 148, ISBN 9789896540821. [Google Scholar]
- Liu, C.; Qiu, Z.; Shan, Z.; Yan, Z. Study of Simultaneous Adsorption of Ammonium and Phosphate in Waters by La-F4A Zeolites Prepared from Spent FCC Catalyst. E3S Web Conf. 2023, 385, 02033. [Google Scholar] [CrossRef]
- Luo, Q.; Wei, J.; Guo, Z.; Song, Y. Adsorption and Immobilization of Phosphorus from Water and Sediments Using a Lanthanum-Modified Natural Zeolite: Performance, Mechanism and Effect. Sep. Purif. Technol. 2024, 329, 125187. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Simultaneous Removal of Ammonium and Phosphate by Alkaline-Activated and Lanthanum-Impregnated Zeolite. Chemosphere 2016, 164, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Wang, M.; Wang, X.; Chen, Y.; Wang, S.; Zhan, H.; Chen, X.; Lu, A.; Zha, S. Experimental Study of the Adsorption of Nitrogen and Phosphorus by Natural Clay Minerals. Adsorpt. Sci. Technol. 2021, 2021, 17–19. [Google Scholar] [CrossRef]
- Chen, H.F.; Lin, Y.J.; Chen, B.H.; Yoshiyuki, I.; Liou, S.Y.H.; Huang, R.T. A Further Investigation of NH4+ Removal Mechanisms by Using Natural and Synthetic Zeolites in Different Concentrations and Temperatures. Minerals 2018, 8, 499. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Xie, Q.; Wu, D. Effect of Algae on Phosphorus Immobilization by Lanthanum-Modified Zeolite. Environ. Pollut. 2021, 276, 116713. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, S.; Wu, D.; Chen, F. Control of Internal Phosphorus Loading in Eutrophic Lakes Using Lanthanum-Modified Zeolite. Chem. Eng. J. 2017, 327, 505–513. [Google Scholar] [CrossRef]
- Zhang, H.; Lyu, T.; Liu, L.; Hu, Z.; Chen, J.; Su, B.; Yu, J.; Pan, G. Exploring a Multifunctional Geoengineering Material for Eutrophication Remediation: Simultaneously Control Internal Nutrient Load and Tackle Hypoxia. Chem. Eng. J. 2021, 406, 127206. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Han, M.; An, W.; Yu, J. Anoxia Remediation and Internal Loading Modulation in Eutrophic Lakes Using Geoengineering Method Based on Oxygen Nanobubbles. Sci. Total Environ. 2020, 714, 136766. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Gu, S.; Cheng, H.; Xing, D.; Twagirayezu, G.; Wang, X.; Ning, W.; Mao, M. Removal of Phosphate from Aqueous Solution by Zeolite-Biochar Composite: Adsorption Performance and Regulation Mechanism. Appl. Sci. 2022, 12, 5334. [Google Scholar] [CrossRef]
- Wu, Y.; Song, L.; Shi, M.; Gu, C.; Zhang, J.; Lv, J.; Xuan, L. Ca/Fe-Layered Double Hydroxide–Zeolite Composites for the Control of Phosphorus Pollution in Sediments: Performance, Mechanisms, and Microbial Community Response. Chem. Eng. J. 2022, 450, 138277. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, M.; Mortimer, R.J.G.; Pan, G. Enhanced Phosphorus Locking by Novel Lanthanum/Aluminum-Hydroxide Composite: Implications for Eutrophication Control. Environ. Sci. Technol. 2017, 51, 3418–3425. [Google Scholar] [CrossRef]
- Yang, C.; Yang, P.; Yin, H. In Situ Control of Internal Nutrient Loading and Fluxes in the Confluence Area of an Eutrophic Lake with Combined P Inactivation Agents and Modified Zeolite. Sci. Total Environ. 2021, 775, 145745. [Google Scholar] [CrossRef]
- Pan, M.; Lyu, T.; Zhang, M.; Zhang, H.; Bi, L.; Wang, L.; Chen, J.; Chongchao, Y.; Ali, J.; Best, S.; et al. Synergistic Recapturing of External and Internal Phosporus for In Situ Eutrophication MItigation. Warer 2020, 12, 2. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, J.; Zhan, Y. Control of Phosphorus Release from Sediment by Iron/Aluminum Co-Modified Zeolite: Efficiency, Mechanism, and Response of Microbial Communities in Sediment. Environ. Sci. Pollut. Res. 2024, 31, 33708–33732. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, Q.; Kuang, Y.; Wu, D. Coupled Influence of PH and Dissolved Organic Carbon on the Immobilization of Phosphorus by Lanthanum-Modified Zeolite. Chemosphere 2021, 274, 129958. [Google Scholar] [CrossRef]
- Wang, C.; Leng, S.; Guo, H.; Yu, J.; Li, W.; Cao, L.; Huang, J. Quantitative Arrangement of Si/Al Ratio of Natural Zeolite Using Acid Treatment. Appl. Surf. Sci. 2019, 498, 143874. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.G.; Sha, H.Y.; Wang, Y.R.; Wang, H.Y.; Zhu, G.C.; Lu, Y.Z. Lanthanum-Quaternized Chitosan-Modified Zeolite for Long-Lasting Operation of Constructed Wetland: A Bifunctional Strategy for Simultaneous Phosphorus Removal and Microbial Clogging Mitigation. Water Res. 2026, 288, 124688. [Google Scholar] [CrossRef] [PubMed]







| Zeolite Form | Particle Size (mm) | Ammonium Ion Adsorption Capacity (mg/g) | Size Category | Citation |
|---|---|---|---|---|
| Romanian natural zeolite | 0.5–1.25 mm | 12.34 | Medium (0.5–2 mm) | [60] |
| 1.25–3.0 mm | 11.4 | Large (2–10 mm) | ||
| >3.0 mm | 10.46 | Large (2–10 mm) | ||
| CLP85+ (clinoptilolite) | 1–2.5 | 31.43 | Medium (0.5–2 mm) | [49] |
| 8–16 | 21.3 | Very large (>10 mm) | ||
| 16–32 | 16.21 | Very large (>10 mm) | ||
| Micro-sized zeolite particles (ZPs) | 0.0048 | 60.6 | Ultra-fine (<0.1 mm) | [64] |
| PAZ hydrogel beads (PVA–alginate matrix with entrapped ZPs) | 4.04 | 28.2 | Ultra-fine (<0.1 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliani, I.; Zacharias, I. Natural and Modified Zeolites as Adsorbents for Nitrogen and Phosphorus Control in Eutrophic Freshwater Bodies: A Comprehensive Review on Freshwater Applications of the Last 10 Years. Materials 2025, 18, 4870. https://doi.org/10.3390/ma18214870
Biliani I, Zacharias I. Natural and Modified Zeolites as Adsorbents for Nitrogen and Phosphorus Control in Eutrophic Freshwater Bodies: A Comprehensive Review on Freshwater Applications of the Last 10 Years. Materials. 2025; 18(21):4870. https://doi.org/10.3390/ma18214870
Chicago/Turabian StyleBiliani, Irene, and Ierotheos Zacharias. 2025. "Natural and Modified Zeolites as Adsorbents for Nitrogen and Phosphorus Control in Eutrophic Freshwater Bodies: A Comprehensive Review on Freshwater Applications of the Last 10 Years" Materials 18, no. 21: 4870. https://doi.org/10.3390/ma18214870
APA StyleBiliani, I., & Zacharias, I. (2025). Natural and Modified Zeolites as Adsorbents for Nitrogen and Phosphorus Control in Eutrophic Freshwater Bodies: A Comprehensive Review on Freshwater Applications of the Last 10 Years. Materials, 18(21), 4870. https://doi.org/10.3390/ma18214870

