Chemistry, Technology and Utilization of Nanolime
Abstract
1. Introduction
2. Methods of Nanolime Synthesis
2.1. Overview and Classification of Synthesis Routes
2.2. The Synthesis Routes and Technological Aspects of Nanolime Production
2.2.1. Bottom-Up Methods
2.2.2. Top-Down Methods
2.3. Comparison of Synthesis Methods
3. Chemical and Physicochemical Properties of Nanolime
4. Application of Nanolime in Construction Materials
5. Other Applications
5.1. Expanding the Use of Nanolime Beyond Construction
5.2. Heritage Conservation
5.3. Carbon Dioxide Capture and Environmental Protection
5.4. Long-Term Energy Storage
5.5. Medicine
6. Discussion
7. Research Perspectives
- Integration into next-generation binders [27]
8. Conclusions
- It combines heritage applications with emerging uses in construction, ecology, medicine, agriculture, and energy technology.
- Its nanoscale structure enables faster carbonation and improved performance compared to traditional lime.
- Its modern synthesis routes (mechanical activation, precipitation, sol–gel, hydrothermal) allow controlled tailoring of particle size, porosity, and surface area.
- It enhances hydration, strength, durability, corrosion resistance, and self-healing of cementitious materials.
- It is effective in CO2 sequestration, pollution mitigation, and as a tool for decarbonisation technologies.
- Its antibacterial, bioactive, and biocompatible properties make it suitable for dentistry and regenerative medicine.
- Challenges remain with agglomeration, stability of dispersions, incomplete carbonation, durability in harsh environments, and production costs.
- Future research should target scalable, eco-friendly production methods and explore cross-disciplinary applications (e.g., energy storage, nanotechnology, smart materials).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carran, D.; Hughes, J.; Leslie, A.; Kennedy, C. A Short History of the Use of Lime as a Building Material Beyond Europe and North America. Int. J. Archit. Herit. 2012, 6, 117–146. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ruiz-Agudo, E. Nanolimes: From Synthesis to Application. Pure Appl. Chem. 2018, 90, 523–550. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Quaresima, R. The Nanolimes in Cultural Heritage Conservation: Characterisation and Analysis of the Carbonatation Process. J. Cult. Herit. 2008, 9, 294–301. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G. Synthesis of Ca(OH)2 Nanoparticles with the Addition of Triton X-100. Protective Treatments on Natural Stones: Preliminary Results. J. Cult. Herit. 2012, 13, 40–46. [Google Scholar] [CrossRef]
- Otero, J.; Borsoi, G.; Monasterio-Guillot, L. The Boom in Nanomaterials for Built Heritage Conservation: Why Does Size Matter? Materials 2023, 16, 3277. [Google Scholar] [CrossRef] [PubMed]
- Monasterio-Guillot, L.; Borsoi, G.; Otero, J. Advances in Nanolime and Other Nanomaterials for Built Heritage Conservation. Materials 2023, 16, 1565. [Google Scholar] [CrossRef] [PubMed]
- Arizzi, A.; Gomez-Villalba, L.S.; Lopez-Arce, P.; Cultrone, G.; Fort, R. Lime Mortar Consolidation with Nanostructured Calcium Hydroxide Dispersions: The Efficacy of Different Consolidating Products for Heritage Conservation. Eur. J. Mineral. 2015, 27, 311–323. [Google Scholar] [CrossRef]
- López-Arce, P.; Zornoza-Indart, A.; Gomez-Villalba, L.S.; Fort, R. Short- and Longer-Term Consolidation Effects of Portlandite (CaOH)2 Nanoparticles in Carbonate Stones. J. Mater. Civ. Eng. 2013, 25, 1655–1665. [Google Scholar] [CrossRef]
- Tzavellos, S.; Pesce, G.L.; Wu, Y.; Henry, A.; Robson, S.; Ball, R.J. Effectiveness of Nanolime as a Stone Consolidant: A 4-Year Study of Six Common UK Limestones. Materials 2019, 12, 2673. [Google Scholar] [CrossRef] [PubMed]
- Slížková, Z.; Frankeová, D.; Drdácký, M. Consolidating Efficiency of Nanolime Product CaLoSiL on Porous Limestone. Buildings 2023, 13, 209. [Google Scholar] [CrossRef]
- Bersch, J.D.; Flores-Colen, I.; Masuero, A.B.; Dal Molin, D.C.C. Photocatalytic TiO2-Based Coatings for Mortars on Facades: A Review of Efficiency, Durability, and Sustainability. Buildings 2023, 13, 186. [Google Scholar] [CrossRef]
- Lu, H.; Smirniotis, P.G.; Ernst, F.O.; Pratsinis, S.E. Nanostructured Ca-Based Sorbents with High CO2 Uptake Efficiency. Chem. Eng. Sci. 2009, 64, 1936–1943. [Google Scholar] [CrossRef]
- Kilic, S.; Toprak, G.; Ozdemir, E. Stability of CaCO3 in Ca(OH)2 Solution. Int. J. Min. Process 2016, 147, 1–9. [Google Scholar] [CrossRef]
- Schaube, F.; Koch, L.; Wörner, A.; Müller-Steinhagen, H. A Thermodynamic and Kinetic Study of the De- and Rehydration of Ca(OH)2 at High H2O Partial Pressures for Thermo-Chemical Heat Storage. Thermochim. Acta 2012, 538, 9–20. [Google Scholar] [CrossRef]
- Sakellariou, K.G.; Criado, Y.A.; Tsongidis, N.I.; Karagiannakis, G.; Konstandopoulos, A.G. Multi-Cyclic Evaluation of Composite CaO-Based Structured Bodies for Thermochemical Heat Storage via the CaO/Ca(OH)2 Reaction Scheme. Sol. Energy 2017, 146, 65–78. [Google Scholar] [CrossRef]
- Criado, Y.A.; Huille, A.; Rougé, S.; Abanades, J.C. Experimental Investigation and Model Validation of a CaO/Ca(OH)2 Fluidized Bed Reactor for Thermochemical Energy Storage Applications. Chem. Eng. J. 2017, 313, 1194–1205. [Google Scholar] [CrossRef]
- Pardo, P.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cognet, P.; Cabassud, M. Ca(OH)2/CaO Reversible Reaction in a Fluidized Bed Reactor for Thermochemical Heat Storage. Sol. Energy 2014, 107, 605–616. [Google Scholar] [CrossRef]
- Anwar, R.; Sofianos, M.V. Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review. Energies 2024, 17, 2572. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Bennici, S. Recent Progress in Thermochemical Heat Storage. In Recent Advances in Renewable Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–310. [Google Scholar]
- Roßkopf, C.; Afflerbach, S.; Schmidt, M.; Görtz, B.; Kowald, T.; Linder, M.; Trettin, R. Investigations of Nano Coated Calcium Hydroxide Cycled in a Thermochemical Heat Storage. Energy Convers. Manag. 2015, 97, 94–102. [Google Scholar] [CrossRef]
- Promta, P.; Chaiyosang, P.; Panya, A.; Laorodphun, P.; Leelapornpisid, W.; Imerb, N. The Evaluation of Anti-Osteoclastic Activity of the Novel Calcium Hydroxide Biodegradable Nanoparticles as an Intracanal Medicament. J. Endod. 2024, 50, 667–673. [Google Scholar] [CrossRef]
- Naseri, M.; Eftekhar, L.; Gholami, F.; Atai, M.; Dianat, O. The Effect of Calcium Hydroxide and Nano–Calcium Hydroxide on Microhardness and Superficial Chemical Structure of Root Canal Dentin: An Ex Vivo Study. J. Endod. 2019, 45, 1148–1154. [Google Scholar] [CrossRef]
- Prakhyath, A.; Parvathaneni, K.P.; Raju, T.B.V.G.; Seshadri, A.; Kintada, V.S.; Parepalli, P.S. Evaluation of the Antibacterial Efficacy of Nanomodified Triple Antibiotic Paste with Nano Anti-Inflammatory Drug and Nano Calcium Hydroxide as Intracanal Medicament Using Confocal Laser Scanning Microscope. Endodontology 2024, 36, 25–29. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Cao, F.; Sun, Z.; Shah, S.P. Effects of Nano-Silica and Nano-Limestone on Flowability and Mechanical Properties of Ultra-High-Performance Concrete Matrix. Constr. Build. Mater. 2015, 95, 366–374. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K. Hydration Kinetics and Activation Energy of Cement Pastes Containing Various Nanoparticles. Compos. B Eng. 2021, 216, 108836. [Google Scholar] [CrossRef]
- Liu, Q.; He, Q.; Li, R.; Feng, Y.; Lyu, X.; Wang, J.; Li, L. Influence of Colloidal Nanosilica on Hydration Kinetics and Properties of CaO/CaSO4-Activated Slag Binder. Int. J. Min. Sci. Technol. 2022, 32, 1407–1418. [Google Scholar] [CrossRef]
- Khokhar, S.A.; Ahmed, T.; Khushnood, R.A.; Basit, M.U.; Shahnawaz; Javed, S. Development of Low Carbon Engineered Cementitious Composite (ECC) Using Nano Lime Calcined Clay Cement (NLC3) Based Matrix. Case Stud. Constr. Mater. 2024, 20, e02669. [Google Scholar] [CrossRef]
- Lesueur, D.; Mücke, F.; Oeinck, H.; Peter, U.; Pust, C.; Verhelst, F. Impact of Quicklime Reactivity and Origin on Autoclaved Aerated Concrete Production. Cem. Wapno Beton. 2011, 16–21. [Google Scholar]
- Albayati, A.H.; Al-Ani, A.F.; Byzyka, J.; Al-Kheetan, M.; Rahman, M. Enhancing Asphalt Performance and Its Long-Term Sustainability with Nano Calcium Carbonate and Nano Hydrated Lime. Sustainability 2024, 16, 1507. [Google Scholar] [CrossRef]
- Adwar, N.N.; Albayati, A.H. Enhancing Moisture Damage Resistance in Asphalt Concrete: The Role of Mix Variables, Hydrated Lime and Nanomaterials. Infrastructures 2024, 9, 173. [Google Scholar] [CrossRef]
- Aljbouri, H.J.; Albayati, A.K. The Effect of Nano-Hydrated Lime on the Durability of Hot Mix Asphalt. J. Eng. 2024, 30, 143–158. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Kavussi, A.; Manteghian, M. The Role of Nanomaterials in Enhancing Adhesion Properties between Bitumen and Aggregate Particles. Results Eng. 2024, 24, 103193. [Google Scholar] [CrossRef]
- Hasaninasab, S. Effects of Nano-Particles on Cold Recycled Asphalt Properties. SN Appl. Sci. 2021, 3, 632. [Google Scholar] [CrossRef]
- Ghanoon, S.A.; Tanzadeh, J.; Mirsepahi, M. Laboratory Evaluation of the Composition of Nano-Clay, Nano-Lime and SBS Modifiers on Rutting Resistance of Asphalt Binder. Constr. Build. Mater. 2020, 238, 117592. [Google Scholar] [CrossRef]
- Mirsepahi, M.; Tanzadeh, J.; Ghanoon, S.A. Laboratory Evaluation of Dynamic Performance and Viscosity Improvement in Modified Bitumen by Combining Nanomaterials and Polymer. Constr. Build. Mater. 2020, 233, 117183. [Google Scholar] [CrossRef]
- Azarhoosh, A.; Abandansari, H.F.; Hamedi, G.H. Surface-Free Energy and Fatigue Performance of Hot-Mix Asphalt Modified with Nano Lime. J. Mater. Civ. Eng. 2019, 31, 04019192. [Google Scholar] [CrossRef]
- Pooja, K.; Tarannum, N. Self-Healing Concrete: A Path towards Advancement of Sustainable Infrastructure. Discov. Appl. Sci. 2025, 7, 703. [Google Scholar] [CrossRef]
- Jozwiak-Niedzwiedzka, D. Microscopic Observations of Self-Healing Products in Calcareous Fly Ash Mortars. Microsc. Res. Tech. 2015, 78, 22–29. [Google Scholar] [CrossRef]
- De Nardi, C.; Giorgi, R. Mortar-Mini -Vascular Networks Filled with Nanolimes: An Innovative Biomimetic Approach for Enhancing Resilience in Built Heritage. Constr. Build. Mater. 2025, 472, 140881. [Google Scholar] [CrossRef]
- Lubelli, B.; Nijland, T.G.; van Hees, R.P.J. Self-Healing of Lime Based Mortars: Microscopy Observations on Case Studies. Heron 2011, 56, 75–92. [Google Scholar]
- Otero, J.; Starinieri, V.; Charola, A.E.; Taglieri, G. Influence of Different Types of Solvent on the Effectiveness of Nanolime Treatments on Highly Porous Mortar Substrates. Constr. Build. Mater. 2020, 230, 117112. [Google Scholar] [CrossRef]
- He, J.; Otero, J.; Crespo-López, L.; Monasterio-Guillot, L.; Benavides-Reyes, C.; Elert, K.; Rodriguez-Navarro, C. Ethyl Silicate–Nanolime Treatment for the Consolidation of Calcareous Building Materials. Constr. Build. Mater. 2024, 418, 135437. [Google Scholar] [CrossRef]
- Maucourant, C.; O’Flaherty, F.; Drago, A. Applicability and Efficacy of an Enhanced Nanolime Consolidation Technique for British Museum Limestone Objects. J. Cult. Herit. 2023, 62, 339–348. [Google Scholar] [CrossRef]
- Browne, D.E.; Peverall, R.; Ritchie, G.A.D.; Viles, H.A. Investigating the Effect of Nanolime Treatment on the Drying Kinetics of Clipsham Limestone. Herit. Sci. 2023, 11, 114. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Evaluation of the Effectiveness and Compatibility of Nanolime Consolidants with Improved Properties. Constr. Build. Mater. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- Ševčík, R.; Viani, A.; Machová, D.; Lanzafame, G.; Mancini, L.; Appavou, M.-S. Synthetic Calcium Carbonate Improves the Effectiveness of Treatments with Nanolime to Contrast Decay in Highly Porous Limestone. Sci. Rep. 2019, 9, 15278. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid. Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Azad, A.T.; Petra, P.M.I.; Begum, F.; Eriksson, S.G.; Azad, A.K. Nanomaterials for Solid Oxide Fuel Cells: A Review. Renew. Sustain. Energy Rev. 2018, 82, 353–368. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples. Anal. Chim. Acta 2016, 904, 10–32. [Google Scholar] [CrossRef]
- Zhernovsky, I.V.; Kozhukhova, N.I.; Cherevatova, A.V.; Rakhimbaev, I.S.; Zhernovskaya, I.V. New Data about Nano-Sized Phase Formation in Binding System Gypsum—Lime (in Russian). Constr. Mater. 2016, 7, 9–12. [Google Scholar]
- Samanta, A.; Chanda, D.K.; Das, P.S.; Ghosh, J.; Mukhopadhyay, A.K.; Dey, A. Synthesis of Nano Calcium Hydroxide in Aqueous Medium. J. Am. Ceram. Soc. 2016, 99, 787–795. [Google Scholar] [CrossRef]
- Madrid, J.A.; Lanzón, M. Synthesis and Morphological Examination of High-Purity Ca(OH)2 Nanoparticles Suitable to Consolidate Porous Surfaces. Appl. Surf. Sci. 2017, 424, 2–8. [Google Scholar] [CrossRef]
- Martínez-Ramírez, S.; Higueruela, L.R.; Cascales, I.; Martín-Garrido, M.; Blanco-Varela, M.T. New Approach to Nanolime Synthesis at Ambient Temperature. SN Appl. Sci. 2019, 1, 105. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Vettori, I.; Ruiz-Agudo, E. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. Langmuir 2016, 32, 5183–5194. [Google Scholar] [CrossRef]
- Yakymechko, Y.; Lutsyuk, I.; Jaskulski, R.; Dulnik, J.; Kropyvnytska, T. The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings 2020, 10, 111. [Google Scholar] [CrossRef]
- Tripathy, S.; Rodrigues, J.; Shimpi, N.G. Top-down and Bottom-up Approaches for Synthesis of Nanoparticles. Mater. Res. Proc. 2023, 145, 92–130. [Google Scholar] [CrossRef]
- Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder Part. J. 2017, 34, 80–90. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, Y.; Zhang, X.; Zhang, T.; Zhang, T.; Li, X. Synthesis and Characterization of Calcium Hydroxide Nanoparticles by Hydrogen Plasma-Metal Reaction Method. Mater. Lett. 2010, 64, 2575–2577. [Google Scholar] [CrossRef]
- Sakthipandi, K.; Sethuraman, B.; Venkatesan, K.; Alhashmi, B.; Purushothaman, G.; Ansari, I.A. Ultrasound-Based Sonochemical Synthesis of Nanomaterials. In Handbook of Vibroacoustics, Noise and Harshness; Springer Nature Singapore: Singapore, 2025; pp. 1117–1162. [Google Scholar]
- Rodriguez-Navarro, C.; Suzuki, A.; Ruiz-Agudo, E. Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir 2013, 29, 11457–11470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Dong, X.; Feng, Y.; Niu, J. Preparation of Ca(OH)2 Nanoparticles by Impinging Stream Reaction Precipitation Method. Can. J. Chem. Eng. 2023, 101, 7251–7262. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Silva, A.S.; Colla, L.; Fedele, L.; Tomasin, P. Effect of Solvent on Nanolime Transport within Limestone: How to Improve in-Depth Deposition. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 171–181. [Google Scholar] [CrossRef]
- Pal Singh, J.; Hee Kim, S.; Cheol Lim, W.; Ok Won, S.; Hwa Chae, K. Local Electronic Structure Investigation of the Sol-Gel Processed Calcium Hydroxide Material. Adv. Mater. Proc. 2021, 3, 377–381. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Yan, J.; Zhao, X.; Cao, Y.; Camaiti, M.; Li, T.; Wei, B. Tuning the Dimensionality of Nano Ca(OH)2 with Surfactants for Wall Painting Consolidation. ChemNanoMat 2019, 5, 1152–1158. [Google Scholar] [CrossRef]
- Taglieri, G.; Felice, B.; Daniele, V.; Volpe, R.; Mondelli, C. Analysis of the Carbonatation Process of Nanosized Ca(OH)2 Particles Synthesized by Exchange Ion Process. Proc. Inst. Mech. Eng. Part. N J. Nanomater. Nanoeng. Nanosyst. 2016, 230, 25–31. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L.; Mondelli, C. Nano Ca(OH)2 Synthesis Using a Cost-effective and Innovative Method: Reactivity Study. J. Am. Ceram. Soc. 2017, 100, 5766–5778. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Del Re, G.; Volpe, R. A New and Original Method to Produce Ca(OH)2 Nanoparticles by Using an Anion Exchange Resin. Adv. Nanopart 2015, 4, 17–24. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L. Synthesizing Alkaline Earth Metal Hydroxides Nanoparticles through an Innovative, Single-Step and Eco-Friendly Method. Solid. State Phenom. 2019, 286, 3–14. [Google Scholar] [CrossRef]
- Eswaramoorthi, P.; Senthil Kumar, V.; Sachin Prabhu, P.; Prabu, T.; Lavanya, S. Influence of Nanosized Silica and Lime Particles on the Behaviour of Soil. Int. J. Civ. Eng. Technol. 2017, 8, 337–344. [Google Scholar]
- Asikin-Mijan, N.; Taufiq-Yap, Y.H.; Lee, H.V. Synthesis of Clamshell Derived Ca(OH)2 Nano-Particles via Simple Surfactant-Hydration Treatment. Chem. Eng. J. 2015, 262, 1043–1051. [Google Scholar] [CrossRef]
- Salvadori, B.; Dei, L. Synthesis of Ca(OH)2 Nanoparticles from Diols. Langmuir 2001, 17, 2371–2374. [Google Scholar] [CrossRef]
- El Bakkari, M.; Bindiganavile, V.; Boluk, Y. Facile Synthesis of Calcium Hydroxide Nanoparticles onto TEMPO-Oxidized Cellulose Nanofibers for Heritage Conservation. ACS Omega 2019, 4, 20606–20611. [Google Scholar] [CrossRef]
- Wang, F.; Gu, Y.; Zha, J.; Wei, S. Synthesis of Graphene Quantum Dots Enhanced Nano Ca(OH)2 from Ammoniated CaCl2. Materials 2023, 16, 1568. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; He, S.; Wang, P.; Xu, Y.; Zhang, L. Green Synthesis of Spherical Calcium Hydroxide Nanoparticles in the Presence of Tannic Acid. Adv. Mater. Sci. Eng. 2020, 2020, 9501897. [Google Scholar] [CrossRef]
- Michalopoulou, A.; Maravelaki, P.-N.; Kilikoglou, V.; Karatasios, I. Morphological Characterization of Water-Based Nanolime Dispersions. J. Cult. Herit. 2020, 46, 11–20. [Google Scholar] [CrossRef]
- Tryfon, P.; Kamou, N.N.; Mourdikoudis, S.; Vourlias, G.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. Microwave-Mediated Synthesis and Characterization of Ca(OH)2 Nanoparticles Destined for Geraniol Encapsulation. Inorganics 2023, 11, 470. [Google Scholar] [CrossRef]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid. Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kadhum, A.O.; Owaid, H.M. Experimental Investigation of Self-Compacting High Performance Concrete Containing Calcined Kaolin Clay and Nano Lime. Civ. Eng. J. 2020, 6, 1798–1808. [Google Scholar] [CrossRef]
- Tudjono, S.; Purwanto, X.X.X.; Apsari, K.T. Study the Effect of Adding Nano Fly Ash and Nano Lime to Compressive Strength of Mortar. Procedia Eng. 2014, 95, 426–432. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Chang, J.-E.; Lai, Y.-C.; Chou, M.-I.M. A Comprehensive Study on the Production of Autoclaved Aerated Concrete: Effects of Silica-Lime-Cement Composition and Autoclaving Conditions. Constr. Build. Mater. 2017, 153, 622–629. [Google Scholar] [CrossRef]
- Bhagath Singh, G.V.P.; Scrivener, K.L. Investigation of Phase Formation, Microstructure and Mechanical Properties of LC3 Based Autoclaved Aerated Blocks. Constr. Build. Mater. 2022, 344, 128198. [Google Scholar] [CrossRef]
- Stefanidou, M.; Tsardaka, E.-C.; Karozou, A. The Influence of Curing Regimes in Self-Healing of Nano-Modified Cement Pastes. Materials 2020, 13, 5301. [Google Scholar] [CrossRef]
- Argın, G.; Uzal, B. Enhancement of Pozzolanic Activity of Calcined Clays by Limestone Powder Addition. Constr. Build. Mater. 2021, 284, 122789. [Google Scholar] [CrossRef]
- Bakolas, A.; Aggelakopoulou, E.; Moropoulou, A.; Anagnostopoulou, S. Evaluation of Pozzolanic Activity and Physicomechanical Characteristics in Metakaolin-Lime Pastes. J. Therm. Anal. Calorim. 2006, 84, 157–163. [Google Scholar] [CrossRef]
- Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. Hygric, Thermal and Durability Properties of Autoclaved Aerated Concrete. Constr. Build. Mater. 2013, 41, 352–359. [Google Scholar] [CrossRef]
- Corro-Escorcia, I.A.; Hernández-Ávila, J.; Cerecedo-Sáenz, E.; Barrientos-Hernández, F.R.; Cruz-Hernández, M.; Toro, N.; Gálvez, E.; Gutiérrez-Amador, M.P.; Salinas-Rodríguez, E. Synthesis of Tobermorite 11 Å during the Formation of Autoclaved Aerated Concrete with the Addition of Diatomite. Results Mater. 2025, 26, 100725. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Su, Y. Hydration Kinetics of Cement-Quicklime System at Different Temperatures. Thermochim. Acta 2019, 673, 1–11. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Microstructural Investigations on Aerated Concrete. Cem. Concr. Res. 2000, 30, 457–464. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Long, Q.; Tang, S.; Zhao, Y. Study on the Properties of Autoclaved Aerated Concrete with High Content Concrete Slurry Waste. Dev. Built Environ. 2024, 17, 100338. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Fan, J.; Chen, A. High Temperature Effect on Mechanical Properties of Autoclaved Aerated Concrete. Constr. Build. Mater. 2024, 414, 134942. [Google Scholar] [CrossRef]
- Shen, J.N.; Xie, Z.X.; Xiao, F.P.; Fan, W.Z. Evaluations of Nano-Sized Hydrated Lime on the Moisture Susceptibility of Hot Mix Asphalt Mixtures. Appl. Mech. Mater. 2012, 174–177, 82–90. [Google Scholar] [CrossRef]
- Al-Marafi, M.N. Effects of Hydrated Lime on Moisture Susceptibility of Asphalt Concrete. Adv. Sci. Technol. Res. J. 2021, 15, 13–17. [Google Scholar] [CrossRef]
- Matarneh, S.; Louzi, N.; Asi, I.; Abdel-Jaber, M.; Masad, E. Effects of Nanomodifiers on Rheological, Chemical, and Microstructural Properties of Asphalt Mastics. Results Eng. 2025, 27, 105750. [Google Scholar] [CrossRef]
- Karakaya, Y.; Yucel, A.O.; Guler, M. Evaluation of Performance Properties of Asphalt Mixtures Using Nano-Organosilane Additive. In Proceedings of the 7th E&E Congress, Madrid, Spain, 14–17 July 2021; pp. 1–7. [Google Scholar]
- Adhikary, S.K.; Rathod, N.; Adhikary, S.D.; Kumar, A.; Perumal, P. Chemical-Based Self-Healing Concrete: A Review. Discov. Civ. Eng. 2024, 1, 119. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Silva, A.S. Understanding the Transport of Nanolime Consolidants within Maastricht Limestone. J. Cult. Herit. 2016, 18, 242–249. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, P.; Ding, J.; Dong, Y.; Cao, Y.; Dong, W.; Zhao, X.; Li, X.; Camaiti, M. Nano Ca(OH)2: A Review on Synthesis, Properties and Applications. J. Cult. Herit. 2021, 50, 25–42. [Google Scholar] [CrossRef]
- Baglioni, P.; Giorgi, R. Soft and Hard Nanomaterials for Restoration and Conservation of Cultural Heritage. Soft Matter 2006, 2, 293. [Google Scholar] [CrossRef]
- Macchia, A.; Bettucci, O.; Gravagna, E.; Ferro, D.; Albini, R.; Mazzei, B.; Campanella, L. Calcium Hydroxide Nanoparticles and Hypogeum Environment: Test to Understand the Best Way of Application. J. Nanomater. 2014, 2014, 167540. [Google Scholar] [CrossRef]
- Becerra, J.; Zaderenko, A.P.; Ortiz, P. Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. Heritage 2019, 2, 2712–2724. [Google Scholar] [CrossRef]
- Ricca, M.; Le Pera, E.; Licchelli, M.; Macchia, A.; Malagodi, M.; Randazzo, L.; Rovella, N.; Ruffolo, S.A.; Weththimuni, M.L.; La Russa, M.F. The CRATI Project: New Insights on the Consolidation of Salt Weathered Stone and the Case Study of San Domenico Church in Cosenza (South Calabria, Italy). Coatings 2019, 9, 330. [Google Scholar] [CrossRef]
- Ambrosi, M.; Dei, L.; Giorgi, R.; Neto, C.; Baglioni, P. Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir 2001, 17, 4251–4255. [Google Scholar] [CrossRef]
- Baiza, B.; Gil, M.; Galacho, C.; Candeias, A.; Girginova, P.I. Preliminary Studies of the Effects of Nanoconsolidants on Mural Paint Layers with a Lack of Cohesion. Heritage 2021, 4, 3288–3306. [Google Scholar] [CrossRef]
- López-Martínez, T.; Otero, J. Preventing the Undesired Surface Veiling after Nanolime Treatments on Wall Paintings: Preliminary Investigations. Coatings 2021, 11, 1083. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Deacidification of Paper, Canvas and Wood. In Nanotechnologies in the Conservation of Cultural Heritage; Springer: Dordrecht, The Netherlands, 2015; pp. 117–144. [Google Scholar]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification. Langmuir 2002, 18, 8198–8203. [Google Scholar] [CrossRef]
- Bastone, S.; Chillura Martino, D.F.; Renda, V.; Saladino, M.L.; Poggi, G.; Caponetti, E. Alcoholic Nanolime Dispersion Obtained by the Insolubilisation-Precipitation Method and Its Application for the Deacidification of Ancient Paper. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 241–249. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Nanoparticles of Calcium Hydroxide for Wood Conservation. Deacidification Vasa Warship. Langmuir 2005, 21, 10743–10748. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Moretto, L.M.; Orsega, E.F.; Pesce, G.L.; Corradi, M.; Weber, J. Effectiveness and Compatibility of a Novel Sustainable Method for Stone Consolidation Based on Di-Ammonium Phosphate and Calcium-Based Nanomaterials. Materials 2019, 12, 3025. [Google Scholar] [CrossRef]
- Rogal, R.; Żychska, A. Nanotechnology—Perspectives and Developments in Art Research and Conservation (in Polish). Acta Univ. Nicolai Copernic. Zabytkozn. I Konserw. 2014, 45, 543. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Baglioni, P. A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Stud. Conserv. 2000, 45, 154–161. [Google Scholar] [CrossRef]
- Iafrate, S.; Sidoti, G.; Capasso, F.E.; Giandomenico, M.; Muca, S.; Daniele, V.; Taglieri, G. New Perspectives for the Consolidation of Mural Paintings in Hypogea with an Innovative Aqueous Nanolime Dispersion, Characterized by Compatible, Sustainable, and Eco-Friendly Features. Nanomaterials 2023, 13, 317. [Google Scholar] [CrossRef]
- Otero, J.; Starinieri, V.; Charola, A.E. Influence of Substrate Pore Structure and Nanolime Particle Size on the Effectiveness of Nanolime Treatments. Constr. Build. Mater. 2019, 209, 701–708. [Google Scholar] [CrossRef]
- Lanzón, M.; Madrid, J.A.; Martínez-Arredondo, A.; Mónaco, S. Use of Diluted Ca(OH)2 Suspensions and Their Transformation into Nanostructured CaCO 3 Coatings: A Case Study in Strengthening Heritage Materials (Stucco, Adobe and Stone). Appl. Surf. Sci. 2017, 424, 20–27. [Google Scholar] [CrossRef]
- Hoyt, A.-L.M.; Staiger, M.; Schweinbeck, M.; Cölfen, H. Penetration Coefficients of Commercial Nanolimes and a Liquid Mineral Precursor for Pore-Imitating Test Systems—Predictability of Infiltration Behavior. Materials 2023, 16, 2506. [Google Scholar] [CrossRef]
- Huesca-Tortosa, J.A.; Spairani-Berrio, Y.; Coviello, C.G.; Sabbà, M.F.; Rizzo, F.; Foti, D. Evaluation of Eco-Friendly Consolidating Treatments in Pugliese Tuff (Gravina Calcarenite) Used in Italian Heritage Buildings. Buildings 2024, 14, 940. [Google Scholar] [CrossRef]
- López-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernández-Valle, M.E.; de Buergo, M.Á.; Fort, R. Influence of Porosity and Relative Humidity on Consolidation of Dolostone with Calcium Hydroxide Nanoparticles: Effectiveness Assessment with Non-Destructive Techniques. Mater. Charact. 2010, 61, 168–184. [Google Scholar] [CrossRef]
- Macera, L.; Daniele, V.; Duchetta, F.; Casciardi, S.; Taglieri, G. New Nanolimes for Eco-Friendly and Customized Treatments to Preserve the Biocalcarenites of the “Valley of Temples” of Agrigento. Constr. Build. Mater. 2021, 306, 124811. [Google Scholar] [CrossRef]
- Daniele, V.; Rosatelli, G.; Macera, L.; Taglieri, G. New Aqueous Nanolime Formulations for Fully Compatible Consolidation Treatments of Historical Mortars for Hypogeum Environment. Constr. Build. Mater. 2022, 356, 129316. [Google Scholar] [CrossRef]
- Natali, I.; Tempesti, P.; Carretti, E.; Potenza, M.; Sansoni, S.; Baglioni, P.; Dei, L. Aragonite Crystals Grown on Bones by Reaction of CO2 with Nanostructured Ca(OH)2 in the Presence of Collagen. Implications in Archaeology and Paleontology. Langmuir 2014, 30, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Nuño, M.; Pesce, G.L.; Bowen, C.R.; Xenophontos, P.; Ball, R.J. Environmental Performance of Nano-Structured Ca(OH)2/TiO2 Photocatalytic Coatings for Buildings. Build. Env. 2015, 92, 734–742. [Google Scholar] [CrossRef]
- Barker, R. The Reversibility of the Reaction CaCO3 ⇄ CaO + CO2. J. Appl. Chem. Biotechnol. 1973, 23, 733–742. [Google Scholar] [CrossRef]
- Barker, R. The Reactivity of Calcium Oxide towards Carbon Dioxide and Its Use for Energy Storage. J. Appl. Chem. Biotechnol. 1974, 24, 221–227. [Google Scholar] [CrossRef]
- Wu, S.F.; Li, Q.H.; Kim, J.N.; Yi, K.B. Properties of a Nano CaO/Al2O3 CO2 Sorbent. Ind. Eng. Chem. Res. 2008, 47, 180–184. [Google Scholar] [CrossRef]
- Santos, E.T.; Alfonsín, C.; Chambel, A.J.S.; Fernandes, A.; Soares Dias, A.P.; Pinheiro, C.I.C.; Ribeiro, M.F. Investigation of a Stable Synthetic Sol–Gel CaO Sorbent for CO2 Capture. Fuel 2012, 94, 624–628. [Google Scholar] [CrossRef]
- Florin, N.H.; Harris, A.T. Reactivity of CaO Derived from Nano-Sized CaCO3 Particles through Multiple CO2 Capture-and-Release Cycles. Chem. Eng. Sci. 2009, 64, 187–191. [Google Scholar] [CrossRef]
- Liu, W.; An, H.; Qin, C.; Yin, J.; Wang, G.; Feng, B.; Xu, M. Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO2 Capture—A Review. Energy Fuels 2012, 26, 2751–2767. [Google Scholar] [CrossRef]
- Asghar, N.; Hussain, A.; Nguyen, D.A.; Ali, S.; Hussain, I.; Junejo, A.; Ali, A. Advancement in Nanomaterials for Environmental Pollutants Remediation: A Systematic Review on Bibliometrics Analysis, Material Types, Synthesis Pathways, and Related Mechanisms. J. Nanobiotechnol. 2024, 22, 26. [Google Scholar] [CrossRef]
- Salazar Sandoval, S.; Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N.; Rojas-Romo, C.; González-Casanova, J.; Gómez, D.R.; Yutronic, N.; Urzúa, M.; et al. Nanomaterials for Potential Detection and Remediation: A Review of Their Analytical and Environmental Applications. Coatings 2023, 13, 2085. [Google Scholar] [CrossRef]
- Canle, M.; Fernández, M.I.; Santaballa, J.A. Applications of Nanomaterials in Environmental Remediation. In Nanomaterials for Environmental Applications; Barakat, M.A.E.-F., Kumar, R., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–22. [Google Scholar]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef]
- Zhang, S. A New Nano-Sized Calcium Hydroxide Photocatalytic Material for the Photodegradation of Organic Dyes. RSC Adv. 2014, 4, 15835–15840. [Google Scholar] [CrossRef]
- Narayan, R.B.; Goutham, R.; Srikanth, B.; Gopinath, K.P. A Novel Nano-Sized Calcium Hydroxide Catalyst Prepared from Clam Shells for the Photodegradation of Methyl Red Dye. J. Environ. Chem. Eng. 2018, 6, 3640–3647. [Google Scholar] [CrossRef]
- Tryfon, P.; Sperdouli, I.; Moustaka, J.; Adamakis, I.-D.S.; Giannousi, K.; Dendrinou-Samara, C.; Moustakas, M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 8350. [Google Scholar] [CrossRef]
- Fujii, I.; Ishino, M.; Akiyama, S.; Murthy, M.S.; Rajanandam, K.S. Behavior of Ca(OH)2/CaO Pellet under Dehydration and Hydration. Sol. Energy 1994, 53, 329–341. [Google Scholar] [CrossRef]
- AlNatheer, Y.; Devanesan, S.; Alghamdi, O.G.; AlSalhi, M.S.; Seif, S.A. Calcium Hydroxide Nanoparticles Synthesized with Medicinal Plants Extract as Surface Coating for Titanium Alloy Bone Implants Using a Simple Method: Characterization and Biomechanical Evaluation. Biocatal. Agric. Biotechnol. 2024, 58, 103165. [Google Scholar] [CrossRef]
- Jain, K.K. Nanomedicine: Application of Nanobiotechnology in Medical Practice. Med. Princ. Pract. 2008, 17, 89–101. [Google Scholar] [CrossRef]
- Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in Cancer Therapy and Diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36. [Google Scholar] [CrossRef]
- Jandt, K.D.; Watts, D.C. Nanotechnology in Dentistry: Present and Future Perspectives on Dental Nanomaterials. Dent. Mater. 2020, 36, 1365–1378. [Google Scholar] [CrossRef]
- Reyhani, M.F.; Ghasemi, N.; Salem Milani, A.; Abbasi Asl, M. Antimicrobial Effect of Nano-Calcium Hydroxide on the Four-and Six-Week-Old Intra-Canal Enterococcus Faecalis Biofilm. J. Dent. 2023, 24, 194–199. [Google Scholar] [CrossRef]
- Charak, R.; Bhardwaj, A.; Gautam, S. Calcium-Based Hydroxide. Synthesis and Applications. In Calcium-Based Materials; Nanda, S.S., Singh, J.P., Gautam, S., Dong, K.Y., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 71–87. ISBN 9781003360599. [Google Scholar]
- Mohammadi, Z.; Dummer, P.M.H. Properties and Applications of Calcium Hydroxide in Endodontics and Dental Traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef] [PubMed]
- Ba-Hattab, R.; Al-Jamie, M.; Aldreib, H.; Alessa, L.; Alonazi, M. Calcium Hydroxide in Endodontics: An Overview. Open J. Stomatol. 2016, 6, 274–289. [Google Scholar] [CrossRef]
- Yang, C.-H.; Wang, Y.-C.; Wang, T.-C.; Chang, Y.-C.; Lin, Y.-C.; Chen, P.-F.; Huang, W.-J.; Wen, H.-Y.; Lin, Y.-M.; Kuo, W.-S.; et al. Facile Synthesis of Highly Tunable Monodispersed Calcium Hydroxide Composite Particles by Using a Two-Step Ion Exchange Reaction. RSC Adv. 2020, 10, 13700–13707. [Google Scholar] [CrossRef]
- Thariny, E.; Sathish, K.R.; Balaji, G.S. Preparation and Characterisation of Seashell-Derived Calcium Oxide Nanoparticle and Chitosan Based Membrane for Bone Regeneration. In Case Studies on Holistic Medical Interventions; Oruganti, S.K., Karras, D., Thakur, S.S., Nagpal, K., Gupta, S.K., Eds.; CRC Press: London, UK, 2025; pp. 367–376. [Google Scholar]
- Hussain, M.; Khan, S.M.; Al-Khaled, K.; Ayadi, M.; Abbas, N.; Chammam, W. Performance Analysis of Biodegradable Materials for Orthopedic Applications. Mater. Today Commun. 2022, 31, 103167. [Google Scholar] [CrossRef]
- López-Arce, P.; Gómez-Villalba, L.S.; Martínez-Ramírez, S.; Álvarez de Buergo, M.; Fort, R. Influence of Relative Humidity on the Carbonation of Calcium Hydroxide Nanoparticles and the Formation of Calcium Carbonate Polymorphs. Powder Technol. 2011, 205, 263–269. [Google Scholar] [CrossRef]
- Gabrielli, A.; Ugolotti, G.; Masi, G.; Sassoni, E. Resistance of Consolidated Lime Mortars to Freeze–Thaw and Salt Crystallization Cycles by Different Accelerated Durability Tests. Mater. Struct. 2024, 57, 70. [Google Scholar] [CrossRef]
No. | Solvent | Temp. °C | NaOH mol/dm3 | CaCl2 mol/dm3 | NaOH/CaCl2 | Aging Time min | Particle Size nm |
---|---|---|---|---|---|---|---|
1 | 1,2-ethanediol | 150 | 1.50 | 0.75 | 2.0 | 40 | 60–150 |
2 | 1,2-propanediol | 150 | 1.50 | 0.75 | 2.0 | 40 | 50–120 |
3 | 1,2-ethanediol | 150 | 0.70 | 0.50 | 1.4 | 5 | 30–60 |
4 | 1,2-ethanediol | 150 | 0.70 | 0.50 | 1.4 | 40 | 40–80 |
5 | 1,2-propanediol | 150 | 0.70 | 0.50 | 1.4 | 40 | 60–90 |
Method | Principle | Typical Particle Size | Advantages | Disadvantages | Typical Yield | Approximate Cost | Environmental Friendliness | Industrial Feasibility | Ref. |
---|---|---|---|---|---|---|---|---|---|
Precipitation | Ca-salt + NaOH in aqueous/alcoholic media | 20–350 nm | Simple, low-cost, tunable particle size, high purity | Agglomeration, limited scalability, CO2 protection needed | High (≈70–80%) | Low–moderate | Moderate—requires chemical reagents (NaOH, Ca salts) | High—scalable and well-controlled | [4] |
Sol–gel | Chelation and controlled hydrolysis (e.g., citric acid) | 55–90 nm | Uniform morphology, mass production potential | Requires annealing, complex processing | Moderate (≈60–70%) | High | Low—due to organic solvents and heating | Moderate | [64] |
Hydrothermal/solvothermal | Reaction of Ca salts or metal in solvent at T/P | 40–800 nm | High crystallinity, stable dispersions, controlled morphology | Specialized equipment, costly, agglomeration in water | High (>80%) | High | Moderate—high energy input | Low–moderate | [62,71] |
Resin-assisted ion exchange | Ca2+ exchanged with OH− on resins | <100 nm | Mild conditions, uniform particles | Low yield, limited industrial use | Low (≈30–50%) | High | High—mild and solvent-free | Low | [67,68] |
Bio-inspired/waste-derived | Biotemplates (sucrose, shells, etc.) | 25–200 nm | Sustainable, low-cost, uses natural resources | Variable quality, reproducibility issues | Moderate (≈60–75%) | Low | Very high—uses natural or waste materials | Moderate | [53,70] |
Ball milling | Mechanical grinding of lime suspensions | 100–350 nm | Direct use of bulk lime, simple concept | Long processing time, broad size distribution | Moderate (≈50–60%) | Low | High—purely mechanical, no solvents | High | [69] |
Vibration-assisted attrition | Cavitation/vibration of lime paste | 100 nm—few µm | Energy efficient, high reactivity | Low nanoparticle yield, polydisperse | Low–moderate (≈25–40%) | Low | High | High | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakymechko, Y.; Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Banach, M. Chemistry, Technology and Utilization of Nanolime. Materials 2025, 18, 4846. https://doi.org/10.3390/ma18214846
Yakymechko Y, Jaskulski R, Jóźwiak-Niedźwiedzka D, Banach M. Chemistry, Technology and Utilization of Nanolime. Materials. 2025; 18(21):4846. https://doi.org/10.3390/ma18214846
Chicago/Turabian StyleYakymechko, Yaroslav, Roman Jaskulski, Daria Jóźwiak-Niedźwiedzka, and Maciej Banach. 2025. "Chemistry, Technology and Utilization of Nanolime" Materials 18, no. 21: 4846. https://doi.org/10.3390/ma18214846
APA StyleYakymechko, Y., Jaskulski, R., Jóźwiak-Niedźwiedzka, D., & Banach, M. (2025). Chemistry, Technology and Utilization of Nanolime. Materials, 18(21), 4846. https://doi.org/10.3390/ma18214846