The Influence of Alkali Metals on the Sintering Mineralization Process of Iron Ore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Basic Sintering Characteristics
- 1.
- Assimilability
- 2.
- Liquid-phase fluidity
- 3.
- Bonding-phase formation characteristics
- 4.
- Strength of the bonding phase
2.2.2. Microhardness
2.2.3. Thermodynamic Analysis
- 1.
- TG experiment
- 2.
- Thermodynamic calculation
3. Results and Discussion
3.1. The Effects of Alkali Metals on the Assimilability
3.2. The Effects of Alkali Metals on the Liquid-Phase Fluidity
3.3. The Effects of Alkali Metals on the Bonding-Phase Formation Characteristic
3.4. The Effects of Alkali Metals on the Strength of Bonding Phase
3.4.1. The Alkali Metal Distribution and Mineral-Phase Microhardness
3.4.2. Compressive Strength
4. Conclusions
- The LAT and ILF of iron ore increased with increasing contents of KCl and NaCl; increasing the contents of K2CO3 and Na2CO3 decreased the LAT but increased the ILF of iron ore. The volatilization of KCl/NaCl led to the formation of pores, which restrained the formation of low-melting-point calcium ferrite. The addition of K2CO3/Na2CO3 promoted the formation of low-melting-point alkali metal silicate.
- The pores caused by the volatilization of KCl/NaCl hindered the diffusion of Fe3+ and Ca2+, which suppressed the formation of SFCA. K2CO3/Na2CO3 reacted with SiO2 to form K2SiO3/Na2SiO3, which melted to form a liquid phase with better fluidity. The flowing liquid phase intervened in the solid-phase reaction between iron ore and CaO, which decreased the SFCA content in the sinter.
- The alkali metals were mainly concentrated in silicate, and less distributed in iron-bearing minerals in the form of a solid solution. Among the iron-bearing minerals, the adsorption energies of alkali metals on the SFCA crystal surface were the lowest. The formation of a solid solution decreased the microhardness of the SFCA bonding phase, and the decrease in the microhardness and content of the SFCA bonding phase resulted in a decrease in bonding-phase strength.
- The iron ore with high alkali metal content presented poor basic sintering characteristics during sintering. Therefore, both removing the alkali metals and ore blending optimization based on basic sintering characteristics are not only good approaches for recovering metallurgical dust but can also play a role in sintering industry applications by reducing costs and improving efficiency, which are future research directions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, L.; Holmes, R.J.; Manuel, J.R. Effects of Alumina on Sintering Performance of Hematite Iron Ores. ISIJ Int. 2007, 47, 349–358. [Google Scholar] [CrossRef]
- Park, J.; Kim, E.; Suh, I.-K.; Lee, J. A Short Review of the Effect of Iron Ore Selection on Mineral Phases of Iron Ore Sinter. Minerals 2022, 12, 35. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Zhang, Y.-Z.; Yue, L.; Du, P.-P.; Tian, T.-L.; Ren, Q.-Q. Multi-Source Ferrous Metallurgical Dust and Sludge Recycling: Present Situation and Future Prospects. J. Cryst. 2024, 14, 273. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, B.B.; Xiong, L.; Li, G.H.; Jiang, T. Recyclig of carbonaceous iron-bearing dusts from iron & steel plants by composite agglomeration process (CAP). J. Ironmak. Steelmak. 2017, 44, 532–543. [Google Scholar]
- Tang, H.-H.; Zhao, L.-H.; Yang, Y.; Han, H.-S.; Wang, L.; Sun, W. Dissolution Kinetics of Chlorine from Iron Ore Sintering Dust. J. Met. 2021, 11, 1185. [Google Scholar] [CrossRef]
- Lanzerstorfer, C.; Bamberger-Strassmayr, B.; Pilz, K. Recycling of blast furnace dust in the iron ore sintering process: Investigation of coke breeze substitution and the influence on off-gas emissions. ISIJ Int. 2015, 55, 758–764. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Wei, H.; Li, Y.; Song, Q.; Zheng, Z. Separation and recovery of potassium chloride from sinter dust of a steel plant. J. Ironmak. Steelmak. 2019, 46, 193–198. [Google Scholar] [CrossRef]
- Luo, G.-P.; Wu, S.-L.; Jia, X.-B.; Duan, X.-G.; Hao, Z.-Z. Influence of K and Na on liquid flow characteristics of Bayan Obo iron concentrate sintered. J. Iron Steel Res. 2019, 25, 10–13. [Google Scholar]
- Luo, G.-P.; Wu, S.-L.; Jia, X.-B.; Duan, X.-G.; Hao, Z.-Z. Effect of K and Na on sintered crystal bonding characteristics of Bayan Obo iron concentrate. J. Iron Steel Res. 2014, 26, 32–34. [Google Scholar]
- Pichler, A.; Hauzenberger, F.; Schenk, J.; Stocker, H.; Thaler, C. Analysis of the Alkali Flow in Ironmaking Reactors by a Thermochemical Approach: Blast Furnace. J. Steel Res. Int. 2018, 89, 1700303. [Google Scholar] [CrossRef]
- Chen, S.-P.; Wang, W.; Xu, R.-S.; Deng, S.-L.; Zheng, H. Influence of multiple factors on the alkali metal enrichment in blast furnaces by a thermodynamic model. J. Ironmak. Steelmak. 2020, 47, 219–227. [Google Scholar] [CrossRef]
- Dastidar, M.G.; Bhattacharyya, A.; Sarkar, B.K.; Dey, R.; Mitra, M.K.; Schenk, J. The effect of alkali on the reaction kinetics and strength of blast furnace coke. Fuel 2020, 268, 117388. [Google Scholar] [CrossRef]
- Xiao, Z.-X.; Li, X.-W.; Chen, X.-H.; Wang, W. Damage investigation of WISCO No.1 blast furnace hearth and mechanism of carbon brick erosion. China Metall. 2023, 33, 87–96. [Google Scholar]
- Long, H.; Li, H.-Y.; Ma, P.; Zhou, Z.; Xie, H.; Yin, S.; Wang, Y.; Zhang, L.; Li, S. Effectiveness of thermal treatment on Pb recovery and Cl removal from sintering dust. J. Hazard. Mater. 2021, 403, 123595. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Gan, M.; Ji, Z.; Yang, Z.; Chen, X. Thermodynamic analysis and reaction behaviors of alkali metal elements during iron ore sintering. J. Iron Steel Res. Int. 2019, 26, 558–566. [Google Scholar] [CrossRef]
- Zhou, H.; Xing, Y.; Zhou, M.; Ma, P. Migration behavior of alkali metals in the process of substituting coking iron ore with biomass. Chin. J. Eng. 2021, 43, 376–384. [Google Scholar]
- Wang, D.; Zhu, D.; Pan, J.; Guo, Z.; Yang, C.; Wang, X.; Dong, T. An Investigation into the Alkali Metals Removal from Zn-Bearing Dust Pellets in Direct Reduction. J. Manag. 2022, 74, 634–643. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, D.; Pan, J.; Guo, Z.; Tian, H.; Wang, D.; Pan, L.i. Distinct Difference in High-temperature Characteristics between Limonitic Nickel Laterite and Ordinary Limonite. ISIJ Int. 2022, 62, 29–37. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Zhang, J.; Liu, Z. Research status and prospects of the iron ore’s high temperature behaviors in the sintering process. Metall. Res. Technol. 2018, 115, 604. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Du, J.; Mi, K.; Lin, H. New concept of iron ores sintering basic characteristics. J. Univ. Sci. Technol. Beijing 2002, 24, 254. [Google Scholar]
- Alfahed, B.; Alayad, A. The Effect of Sintering Temperature on Vickers Microhardness and Flexural Strength of Translucent Multi-Layered Zirconia Dental Materials. Coatings 2023, 13, 688. [Google Scholar] [CrossRef]
- Ma, H.; Qin, H. Experimental research on assimilation performance of iron ore and ore matching optimization. Sinter. Pelletizing 2022, 47, 13–19. [Google Scholar]
- Hou, Y.; Zhang, G.; Zhou, G.; Fan, D. Mixed Alkali Effect in Viscosity of CaO-SiO2-Al2O3-R2O melt. Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci. 2020, 51, 985–1002. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Wang, X.; Li, T.; Ding, G.; Shen, F. Experimental study on the influence of K2O on the strength of sinter. Iron Steel 2020, 55, 49–55. [Google Scholar]
- Wang, P.; Yang, Y.; Li, L.; Yu, Y.; Tian, X. First-principles calculations of phase transition, elasticity, phonon spectra, and thermodynamic properties for ThO2 polymorphs. J. Solid State Chem. 2023, 326, 124221. [Google Scholar] [CrossRef]
- Zhu, X.; Li, T.; Wu Jing Wang, L.; Yu, Y.; Tang, H.; Qiao, Z.; Zhang, S. Electronic and optical properties of Be, Ca, Ba and Eu adsorbed on β-Si3N4 (2 0 0) surface based on first-principles calculations. Mater. Sci. Semicond. Process. 2023, 160, 107406. [Google Scholar] [CrossRef]
- Torres, E.; Kaloni, T.P. Projector augmented-wave pseudopotentials for uranium-based compounds. Computational. Mater. Sci. 2020, 171, 109237. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Li, J.; Chen, X.; Xhen, P. Effect of Al2O3/SiO2 ratio on morphology of complex calcium ferrite. Iron Steel Res. Int. 2023, 30, 1921–1928. [Google Scholar] [CrossRef]
TFe | CaO | SiO2 | Al2O3 | MgO | K2O | Na2O |
---|---|---|---|---|---|---|
61.28 | 0.17 | 5.27 | 2.69 | 0.26 | 0.02 | -- |
Samples | TFe | CaO | SiO2 | Al2O3 | MgO | KCl | NaCl | K2CO3 | Na2CO3 |
---|---|---|---|---|---|---|---|---|---|
O | 61.28 | 0.17 | 5.27 | 2.69 | 0.26 | 0.00 | -- | -- | -- |
KC0.5 | 60.69 | 0.17 | 5.22 | 2.66 | 0.26 | 0.96 | -- | -- | -- |
KC1 | 60.11 | 0.17 | 5.17 | 2.64 | 0.26 | 1.91 | -- | -- | -- |
KC2 | 58.94 | 0.16 | 5.07 | 2.59 | 0.25 | 3.82 | -- | -- | -- |
KC4 | 56.60 | 0.16 | 4.87 | 2.48 | 0.24 | 7.63 | -- | -- | -- |
NC0.5 | 60.50 | 0.17 | 5.20 | 2.66 | 0.26 | -- | 1.28 | -- | -- |
NC1 | 59.72 | 0.17 | 5.14 | 2.62 | 0.25 | -- | 2.55 | -- | -- |
NC2 | 58.16 | 0.16 | 5.00 | 2.55 | 0.25 | -- | 5.09 | -- | -- |
NC4 | 55.05 | 0.15 | 4.73 | 2.42 | 0.23 | -- | 10.17 | -- | -- |
KO0.5 | 60.73 | 0.17 | 5.22 | 2.67 | 0.26 | -- | -- | 0.89 | -- |
KO1 | 60.20 | 0.17 | 5.18 | 2.64 | 0.26 | -- | -- | 1.77 | -- |
KO2 | 59.11 | 0.16 | 5.08 | 2.59 | 0.25 | -- | -- | 3.54 | -- |
KO4 | 56.95 | 0.16 | 4.90 | 2.50 | 0.24 | -- | -- | 7.07 | -- |
NO0.5 | 60.57 | 0.17 | 5.21 | 2.66 | 0.26 | -- | -- | -- | 1.16 |
NO1 | 59.86 | 0.17 | 5.15 | 2.63 | 0.25 | -- | -- | -- | 2.31 |
NO2 | 58.45 | 0.16 | 5.03 | 2.57 | 0.25 | -- | -- | -- | 4.61 |
NO4 | 55.63 | 0.15 | 4.78 | 2.44 | 0.24 | -- | -- | -- | 9.22 |
Sample | KC0 | KC0.5 | KC1 | KC2 | KC4 | NC0 | NC0.5 | NC1 | NC2 | NC4 |
---|---|---|---|---|---|---|---|---|---|---|
LAT/°C | 1288 | 1289 | 1293 | 1295 | 1300 | 1288 | 1288 | 1290 | 1293 | 1295 |
Sample | KO0 | KO0.5 | KO1 | KO2 | KO4 | NO0 | NO0.1 | NO1 | NO2 | NO4 |
LAT/°C | 1288 | 1285 | 1281 | 1278 | 1270 | 1288 | 1284 | 1277 | 1274 | 1265 |
Sample | KC0 | KC0.5 | KC1 | KC2 | KC4 | NC0 | NC0.5 | NC1 | NC2 | NC4 |
---|---|---|---|---|---|---|---|---|---|---|
ILF | 0.41 | 0.4 | 0.44 | 0.45 | 0.47 | 0.41 | 0.43 | 0.46 | 0.52 | 0.74 |
Sample | KO0 | KO0.5 | KO1 | KO2 | KO4 | NO0 | NO0.1 | NO1 | NO2 | NO4 |
ILF | 0.41 | 0.48 | 0.54 | 0.77 | 1.09 | 0.41 | 0.56 | 0.82 | 1.17 | 1.78 |
Samples | Fe2O3 | Al2O3 | SiO2 | CaO | FeO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
O | 57.839 | 4.085 | 11.064 | 22.152 | 4.730 | 0.131 | 0.000 | 0.000 |
KC0.5 | 57.971 | 4.039 | 11.019 | 22.077 | 4.764 | 0.125 | 0.004 | 0.000 |
KC1 | 58.021 | 3.996 | 11.019 | 22.048 | 4.786 | 0.124 | 0.006 | 0.000 |
KC2 | 58.075 | 3.958 | 11.019 | 22.009 | 4.807 | 0.121 | 0.010 | 0.000 |
KC4 | 58.241 | 3.904 | 10.970 | 21.901 | 4.855 | 0.113 | 0.016 | 0.000 |
NC0.5 | 58.828 | 3.891 | 10.687 | 21.358 | 4.946 | 0.124 | 0.000 | 0.166 |
NC1 | 59.458 | 3.774 | 10.431 | 20.874 | 5.077 | 0.122 | 0.000 | 0.264 |
NC2 | 60.248 | 3.607 | 10.118 | 20.206 | 5.290 | 0.115 | 0.000 | 0.416 |
NC4 | 61.380 | 3.372 | 9.643 | 19.232 | 5.619 | 0.105 | 0.000 | 0.650 |
Samples | Fe2O3 | Al2O3 | SiO2 | CaO | FeO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
O | 57.839 | 4.085 | 11.064 | 22.152 | 4.730 | 0.131 | 0.000 | 0.000 |
KO0.5 | 60.222 | 3.085 | 10.414 | 20.806 | 5.220 | 0.120 | 0.134 | 0.000 |
KO1 | 61.952 | 2.229 | 9.835 | 19.692 | 5.788 | 0.115 | 0.389 | 0.000 |
KO2 | 63.758 | 1.232 | 8.994 | 18.007 | 6.436 | 0.111 | 1.462 | 0.000 |
KO4 | 65.752 | 0.953 | 7.241 | 14.483 | 6.780 | 0.103 | 4.687 | 0.000 |
NO0.5 | 61.572 | 3.255 | 9.610 | 19.050 | 5.652 | 0.123 | 0.000 | 0.738 |
NO1 | 64.454 | 2.978 | 8.413 | 16.862 | 5.756 | 0.120 | 0.000 | 1.418 |
NO2 | 67.792 | 2.624 | 6.984 | 13.998 | 5.874 | 0.119 | 0.000 | 2.610 |
NO4 | 71.110 | 2.284 | 5.312 | 10.636 | 6.051 | 0.143 | 0.000 | 4.464 |
Points | Fe | Ca | Si | Al | Mg | O | Na | K | Minerals |
---|---|---|---|---|---|---|---|---|---|
1 | 26.56 | 8.11 | 2.76 | 1.23 | 0.68 | 60.66 | -- | -- | SFCA |
2 | 3.37 | 16.26 | 12.34 | 0.12 | 0.16 | 67.75 | -- | -- | Silicate |
3 | 38.23 | 0.38 | 0.07 | 0.18 | 0.17 | 60.97 | -- | -- | H/M |
4 | 29.96 | 7.84 | 2.38 | 1.28 | 0.99 | 57.47 | -- | 0.08 | SFCA |
5 | 5.60 | 16.33 | 8.68 | 9.97 | 0.26 | 58.82 | -- | 0.34 | Silicate |
6 | 44.10 | 0.31 | 0.07 | 0.16 | 0.14 | 55.18 | -- | 0.04 | H/M |
7 | 25.37 | 7.20 | 3.61 | 2.14 | 1.44 | 60.09 | 0.15 | -- | SFCA |
8 | 5.54 | 14.39 | 9.67 | 8.37 | 0.82 | 60.34 | 0.87 | -- | Silicate |
9 | 41.38 | 0.19 | 0.12 | 0.25 | 0.20 | 57.76 | 0.10 | -- | H/M |
10 | 25.25 | 9.36 | 3.50 | 0.94 | 1.13 | 59.10 | -- | 0.72 | SFCA |
11 | 4.70 | 0.52 | 15.87 | 0.44 | 0.33 | 55.32 | -- | 22.82 | Silicate |
12 | 39.04 | 0.91 | 0.15 | 0.06 | 0.17 | 59.47 | -- | 0.20 | H/M |
13 | 25.19 | 6.58 | 2.68 | 1.58 | 0.99 | 62.54 | 0.44 | -- | SFCA |
14 | 6.71 | 20.01 | 15.75 | 0.31 | 0.15 | 55.85 | 1.22 | -- | Silicate |
15 | 37.18 | 0.18 | 0.12 | 0.33 | 0.27 | 61.71 | 0.21 | -- | H/M |
Crystals | a | b | c | |
---|---|---|---|---|
Ca2SiO4 | Calc | 6.784 | 5.494 | 9.261 |
Exp | 6.737 | 5.481 | 9.174 | |
Error | 0.69% | 0.24% | 0.94% | |
SFCA | Calc | 10.080 | 10.660 | 9.110 |
Exp | 10.050 | 10.558 | 9.069 | |
Error | 0.30% | 0.96% | 0.45% | |
Fe2O3 | Calc | 5.032 | 5.032 | 13.733 |
Exp | 5.024 | 5.024 | 13.693 | |
Error | 0.16% | 0.16% | 0.29% | |
Fe3O4 | Calc | 8.399 | 8.399 | 8.399 |
Exp | 8.389 | 8.389 | 8.389 | |
Error | 0.12% | 0.12% | 0.12% |
Samples | Silicate | SFCA | Hematite | Magnetite |
---|---|---|---|---|
O | 404.3 | 891.4 | 1056.5 | 775.2 |
KC0.5 | 405.2 | 867.1 | 1055.2 | 763.4 |
KC1 | 410.3 | 839.1 | 1049.4 | 754.2 |
KC2 | 408.2 | 802.6 | 1027.9 | 732.7 |
KC4 | 395.6 | 787.7 | 1006.7 | 703.2 |
NC0.5 | 402.5 | 869.4 | 1050.5 | 766.8 |
NC1 | 403.1 | 835.1 | 1028.2 | 740.3 |
NC2 | 407.3 | 787.2 | 988.0 | 701.8 |
NC4 | 411.2 | 769.2 | 968.7 | 682.9 |
KO0.5 | 410.8 | 839.6 | 1028.3 | 745.7 |
KO1 | 405.7 | 808.5 | 986.6 | 701.6 |
KO2 | 392.1 | 756.7 | 966.4 | 654.5 |
KO4 | 394.6 | 685.5 | 933.9 | 628.7 |
NO0.5 | 399.2 | 846.1 | 1039.7 | 754.7 |
NO1 | 411.5 | 801.2 | 1010.4 | 721.4 |
NO2 | 407.6 | 762.7 | 982.3 | 694.8 |
NO4 | 403.2 | 725.1 | 966.4 | 667.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Lu, F.; Ju, J.; Guo, W.; Zu, J. The Influence of Alkali Metals on the Sintering Mineralization Process of Iron Ore. Materials 2025, 18, 227. https://doi.org/10.3390/ma18020227
Jiang X, Lu F, Ju J, Guo W, Zu J. The Influence of Alkali Metals on the Sintering Mineralization Process of Iron Ore. Materials. 2025; 18(2):227. https://doi.org/10.3390/ma18020227
Chicago/Turabian StyleJiang, Xintai, Fenglin Lu, Jiantao Ju, Wenke Guo, and Jian Zu. 2025. "The Influence of Alkali Metals on the Sintering Mineralization Process of Iron Ore" Materials 18, no. 2: 227. https://doi.org/10.3390/ma18020227
APA StyleJiang, X., Lu, F., Ju, J., Guo, W., & Zu, J. (2025). The Influence of Alkali Metals on the Sintering Mineralization Process of Iron Ore. Materials, 18(2), 227. https://doi.org/10.3390/ma18020227