High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Materials
2.2. Split Hopkinson Pressure Bar (SHPB) Testing System
2.3. Industrial Computed Tomography (CT) and Scanning Electron Microscopy (SEM)
3. Results
3.1. Stress-Wave Propagation Characteristics
3.2. CT Scanning Results
3.3. SEM Scanning Results
4. Numerical Simulation Analysis
5. Conclusions
- Under identical loading-rate impacts, the TC group’s energy-attenuation coefficient β averages 31.18%, versus 21.43% for the CM group—an increase of 9.75 percentage points, confirming that HTS absorbs stress-wave energy.
- As the loading rate increases stepwise, the TC group’s β fluctuates between 29.95% and 32.61%, demonstrating stability under dynamic impact.
- CT and SEM confirm 1–3 mm intra-HTS pores and a dense interfacial transition zone (ITZ). Numerical results further show that after traversing two bands of HTS particles, the stress-wave peak decreases from 15 MPa to 6 MPa, while the pulse width broadens from 0.15 ms to 0.22 ms—indicating that reflections at solid–gas interfaces and multiple scattering in HTS drive amplitude attenuation and, consequently, energy dispersion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, Q.; Wu, H.; Sun, H.; Fang, Q. Experimental and Numerical Studies on Dynamic Behavior of Reinforced UHPC Panel under Medium-Range Explosions. Int. J. Impact Eng. 2021, 148, 103761. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, Q.; Jin, D.; Wang, Z. Numerical Study of Fractal Analysis of Crack Propagation in Concrete under Different Strain Rates by Meso-scale Particle Element Modeling. Int. J. Impact Eng. 2023, 173, 104440. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G.; Liu, L.; He, Y.; Wang, Z.; Yang, X.; Li, Y. Dynamic Responses and Damage Mode of Reinforced Concrete Slabs under Confined Blasting Loads Induced by Thermobaric Explosive: Experimental and Numerical Investigation. Int. J. Impact Eng. 2025, 198, 105186. [Google Scholar] [CrossRef]
- Yin, X.; Li, Q.; Wang, Q.; Chen, B.; Xu, S. Experimental and Numerical Investigations on the Stress Waves Propagation in Strain-Hardening Fiber-Reinforced Cementitious Composites: Stochastic Analysis Using Polynomial Chaos Expansions. J. Build. Eng. 2023, 74, 106902. [Google Scholar] [CrossRef]
- Wan, D.; Wang, M.; Zhu, Z.; Wang, F.; Zhou, L.; Liu, R.; Gao, W.; Shu, Y.; Xiao, H. Coupled GIMP and CPDI Material Point Method in Modelling Blast-Induced Three-Dimensional Rock Fracture. Int. J. Min. Sci. Technol. 2022, 32, 1097–1114. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, F. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments. Rock Mech. Rock Eng. 2018, 51, 747–764. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Q.; Zhong, X.; Zhang, T. Experimental Study on Basic Mechanical Properties of Porous Metal-Concrete. Constr. Build. Mater. 2021, 304, 124663. [Google Scholar] [CrossRef]
- Pietras, D.; Linul, E.; Sadowski, T.; Rusinek, A. Out-of-Plane Crushing Response of Aluminum Honeycombs in-Situ Filled with Graphene-Reinforced Polyurethane Foam. Compos. Struct. 2020, 249, 112548. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating Phase Composite Foam Based on Porous Aluminum Skeleton for High Energy Absorption. Polym. Test. 2021, 93, 106917. [Google Scholar] [CrossRef]
- Shang, W.; Huang, Z.; Zu, X.; Xiao, Q.; Jia, X. Influence Mechanism of Foamed Concrete Coating Thickness on the Blast Resistance of RC Walls. Materials 2022, 15, 5473. [Google Scholar] [CrossRef]
- Eltayeb, E.; Ma, X.; Zhuge, Y.; Youssf, O.; Mills, J.E. Influence of Rubber Particles on the Properties of Foam Concrete. J. Build. Eng. 2020, 30, 101217. [Google Scholar] [CrossRef]
- Nian, W.; Subramaniam, K.V.L.; Andreopoulos, Y. Experimental Investigation on Blast Response of Cellular Concrete. Int. J. Impact Eng. 2016, 96, 105–115. [Google Scholar] [CrossRef]
- Kuzielová, E.; Pach, L.; Palou, M. Effect of Activated Foaming Agent on the Foam Concrete Properties. Constr. Build. Mater. 2016, 125, 998–1004. [Google Scholar] [CrossRef]
- Hou, X.; Wang, D.; Shi, Y.; Guo, H.; He, Y. Hydraulic Activity and Microstructure Analysis of High-Titanium Slag. Materials 2020, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yi Man Li, R.; Jotikasthira, N.; Li, K.; Zeng, L. Experimental Study on Lightweight Precast Composite Slab of High-Titanium Heavy-Slag Concrete. Adv. Civ. Eng. 2021, 2021, 6665388. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, B. Application of Pre-Wetted High Titanium Heavy Slag Aggregate in Cement Concrete. Materials 2022, 15, 831. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Sun, J. Mechanical Behavior and Fracture Mechanisms of High-Strength Concrete Incorporating Porous Titanium Slag Aggregate. J. Mater. Res. Technol. 2025, 36, 6075–6087. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, T.; Li, J.; Qiu, B.; Qiu, W.; Li, B.; Shu, B.; Gong, J.; Guo, L.; Li, Y. Preparation and Performance Study of Radiation-Proof Ultra-High-Performance Concrete. Coatings 2023, 13, 906. [Google Scholar] [CrossRef]
- Liu, Z.; Lai, Z.; Luo, X.; Xiao, R.; Liu, M.; Deng, Q.; Chen, J.; Lu, Z.; Lv, S. Effect of titanium slag on the properties of magnesium phosphate cement. Constr. Build. Mater. 2022, 343, 128132. [Google Scholar] [CrossRef]
- Dobmann, N.; Fiedler, B. Numerical Analysis of the Effects of Pores on Propagating Guided Waves. Int. J. Solids Struct. 2024, 301, 112940. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, C.; Ma, F.; Liu, D. Elastic Wave Scattering and Dynamic Stress Concentrations in Exponential Graded Materials with Two Elliptic Holes. Wave Motion 2014, 51, 466–475. [Google Scholar] [CrossRef]
- Lang, L.; Zhu, Z.; Deng, S.; Wang, L.; Niu, C.; Xiao, D. Study on the arresting mechanism of two arrest-holes on moving crack in brittle material under impacts. Eng. Fract. Mech. 2020, 129, 106936. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Y.; Lu, Y. Graphite-Enhanced Foam Cement-Based Materials: Mechanical Properties, Pore Structure and Electromagnetic Wave Absorption Performance. Mater. Today Commun. 2024, 40, 109377. [Google Scholar] [CrossRef]
- Bai, Y.; Xia, Q.; Zhang, D. Mn–Zn Ferrite Foam Concrete: Enhanced Electromagnetic Wave Absorption and Pore Structure by Incorporating Carbon Fibers. Ceram. Int. 2024, 50, 25578–25597. [Google Scholar] [CrossRef]
- Jiang, R.; Dai, F.; Liu, Y.; Li, A. Fast marching method for microseismic source location in cavern-containing rockmass: Performance analysis and engineering application. Engineering 2021, 7, 1023–1034. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. J. Rock Mech. Geotech. Eng. 2021, 13, 1203–1230. [Google Scholar] [CrossRef]
- Pyzalski, M.; Juszczyk, M.; Durczak, K.; Sala, D.; Duda, J.; Dudek, M.; Ustinovičius, L. Cement Carbonation Under Fermentation Conditions as a Tool for CO2 Emission Management—Technological, Environmental and Economic Analysis. Energies 2025, 18, 4588. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, Z.; Wang, M.; Zhou, L.; Ren, L.; Wang, Y. Investigation of the influence of non-uniform strain zone on the crack propagation of PMMA material based on 2D-DIC. Int. J. Impact Eng. 2025, 196, 105159. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, J. Effect of electric furnace steel slag powder on the strength of green low-carbon concrete with high-titanium blast furnace slag. J. CO2 Util. 2024, 89, 102957. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Lu, Z.; Hou, L.; Chen, J. Preparation and properties of reactive powder concrete by using titanium slag aggregates. Constr. Build. Mater. 2020, 234, 117342. [Google Scholar]












| Composition | CaO | SiO2 | TiO2 | Al2O3 | MgO | Fe2O3 | SO3 | MnO | K2O |
| Content | 27.92 | 23.63 | 23.63 | 13.30 | 7.76 | 1.53 | 1.15 | 0.75 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Wang, M.; Sun, J. High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense. Materials 2025, 18, 4609. https://doi.org/10.3390/ma18194609
Gao W, Wang M, Sun J. High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense. Materials. 2025; 18(19):4609. https://doi.org/10.3390/ma18194609
Chicago/Turabian StyleGao, Weiting, Meng Wang, and Jinshan Sun. 2025. "High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense" Materials 18, no. 19: 4609. https://doi.org/10.3390/ma18194609
APA StyleGao, W., Wang, M., & Sun, J. (2025). High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense. Materials, 18(19), 4609. https://doi.org/10.3390/ma18194609

