Flammability and Thermal Properties of Rigid Polyurethane Foams Modified with Waste Biomass and Ash
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of PU Foam Composites
- Ground brewers’ spent grain (labeled B);
- Spent coffee grounds (labeled C);
- Ground soybean husk (labeled S);
- Brewers’ spent grain bottom ash (labeled Ba);
- Spent coffee grounds bottom ash (labeled Ca);
- Soybean husk bottom ash (labeled Sa).
2.2. Assessment and Characterization of the Foam Specimens
3. Results and Discussion
3.1. Fire Resistance Evaluation
3.2. Cone Calorimeter Analysis
3.3. Thermal Properties Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EPS | Expanded polystyrene |
RPUF | Rigid polyurethane foam |
PU | Polyurethane |
BSG | Brewers’ spent grain |
SCG | Spent coffee grounds |
PMDI | Polymeric methylene diphenyl diisocyanate |
SD | Standard deviation |
TG | Thermogravimetric analysis |
DTG | Derivative thermogravimetry |
DTA | Differential thermal analysis |
POSS | Polyhedral oligomeric silsesquioxane |
References
- Jeon, C.K.; Lee, J.S.; Chung, H.; Kim, J.H.; Park, J.P. A study on insulation characteristics of glass wool and mineral wool coated with a polysiloxane agent. Adv. Mater. Sci. Eng. 2017, 2017, 3938965. [Google Scholar] [CrossRef]
- Bartczak, P.; Stachowiak, J.; Szmitko, M.; Grząbka-Zasadzińska, A.; Borysiak, S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. Materials 2023, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Li, L.; Chen, Y.; Xu, B.; Qiu, Y. Quickly self-extinguishing flame retardant behavior of rigid polyurethane foams linked with phosphaphenanthrene groups. Compos. Part B 2019, 175, 107186. [Google Scholar] [CrossRef]
- Michálková, D.; Ďurica, P. Experimental Verification of Thermal Insulation in Timber Framed Walls. Materials 2022, 15, 2040. [Google Scholar] [CrossRef] [PubMed]
- Del Saz-Orozco, B.; Alonso, M.V.; Oliet, M.; Domínguez, J.C.; Rojo, E.; Rodriguez, F. Lignin particle-and wood flour-reinforced phenolic foams: Friability, thermal stability and effect of hygrothermal aging on mechanical properties and morphology. Compos. Part B 2015, 80, 154–161. [Google Scholar] [CrossRef]
- Lisowski, P.; Glinicki, M.A. Promising biomass waste–derived insulation materials for application in construction and buildings. Biomass Convers. Biorefin. 2025, 15, 57–74. [Google Scholar] [CrossRef]
- Malchiodi, B.; Marchetti, R.; Barbieri, L.; Pozzi, P. Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials. Appl. Sci. 2022, 12, 3844. [Google Scholar] [CrossRef]
- Yang, Y.; Haurie, L.; Wang, D.Y. Bio-based materials for fire-retardant application in construction products: A review. J. Therm. Anal. Calorim. 2022, 147, 6563–6582. [Google Scholar] [CrossRef]
- Kairytė, A.; Kremensas, A.; Vaitkus, S.; Członka, S.; Strąkowska, A. Fire Suppression and Thermal Behavior of Biobased Rigid Polyurethane Foam Filled with Biomass Incineration Waste Ash. Polymers 2020, 12, 683. [Google Scholar] [CrossRef]
- Hejna, A. Clays as Inhibitors of Polyurethane Foams’ Flammability. Materials 2021, 14, 4826. [Google Scholar] [CrossRef]
- Chi, J.; Zhang, Y.; Tu, F.; Sun, J.; Zhi, H.; Yang, J. The synergistic flame-retardant behaviors of soybean oil phosphate-based polyols and modified ammonium polyphosphate in polyurethane foam. J. Polym. Res. 2023, 30, 84. [Google Scholar] [CrossRef]
- Song, F.; Jia, P.; Bo, C.; Ren, X.; Hu, L.; Zhou, Y. The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in-situ polymerization. J. Dispers. Sci. Technol. 2020, 42, 1042–1051. [Google Scholar] [CrossRef]
- Widsten, P.; Tamminen, T.; Paajanen, A.; Hakkarainen, T.; Liitiä, T. Modified and unmodified technical lignins as flame retardants for polypropylene. Holzforschung 2021, 75, 584–590. [Google Scholar] [CrossRef]
- Zhou, K.; Gong, K.; Zhou, Q.; Zhao, S.; Guo, H.; Qian, X. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J. Clean. Prod. 2020, 257, 120606. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaur, R.; Walia, R.S. Investigation on flammability of rigid polyurethane foam-mineral fillers composite. Fire Mater. 2019, 43, 917–927. [Google Scholar] [CrossRef]
- Ganesan, K.; Guin, B.; Wilbanks, E.; Sternberg, J. Synthesis and Characterization of Soy Hull Biochar-Based Flexible Polyurethane Foam Composites. Materials 2025, 18, 2006. [Google Scholar] [CrossRef]
- Miedzianowska-Masłowska, J.; Masłowski, M.; Strzelec, K. Biomass, Phyto-Ash, and Biochar from Beech Wood as Functional Additives for Natural Rubber-Based Elastomer Composites. Materials 2025, 18, 1659. [Google Scholar] [CrossRef]
- Wrześniewska-Tosik, K.; Ryszkowska, J.; Mik, T.; Wesołowska, E.; Kowalewski, T.; Pałczyńska, M.; Sałasińska, K.; Walisiak, D.; Czajka, A. Composites of Semi-Rigid Polyurethane Foams with Keratin Fibers Derived from Poultry Feathers and Flame Retardant Additives. Polymers 2020, 12, 2943. [Google Scholar] [CrossRef]
- Lin, L.; Mirkin, S.; Park, H.E. Biodegradable Composite Film of Brewers’ Spent Grain and Poly(Vinyl Alcohol). Processes 2023, 11, 2400. [Google Scholar] [CrossRef]
- Salman, W.; Ney, Y.; Nasim, M.J.; Bohn, T.; Jacob, C. Turning apparent waste into new value: Up-cycling strategies exemplified by Brewer’s spent grains (BSG). Curr. Nutraceuticals 2020, 1, 6–13. [Google Scholar] [CrossRef]
- Pérocheau Arnaud, S. Valorisation of Brewer’s Spent Grain: Lignocellulosic Fractionation and its Potential for Polymer and Composite Material Applications. Chem. Afr. 2024, 7, 2989–3010. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s Spent Grains—Valuable Beer Industry By-Product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Hejna, A.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Chmielnicki, B.; Korol, J.; Formela, K. Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder. J. Clean. Prod. 2021, 285, 124839. [Google Scholar] [CrossRef]
- Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, Ł. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind. Crops Prod. 2017, 108, 844–852. [Google Scholar] [CrossRef]
- Hejna, A.; Haponiuk, J.; Piszczyk, Ł.; Klein, M.; Formela, K. Performance properties of rigid polyurethane-polyisocyanurate/brewers’ spent grain foamed composites as function of isocyanate index. E-Polymers 2017, 17, 427–437. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J. Build. Eng. 2021, 40, 102332. [Google Scholar] [CrossRef]
- Stufano, P.; Perrotta, A.; Labarile, R.; Trotta, M. The second life of coffee can be even more energizing: Circularity of materials for bio-based electrochemical energy storage devices. MRS Energy Sustain. 2022, 9, 443–460. [Google Scholar] [CrossRef]
- Johnson, K.; Liu, Y.; Lu, M. A review of recent advances in spent coffee grounds upcycle technologies and practices. Front. Chem. Eng. 2022, 4, 838605. [Google Scholar] [CrossRef]
- Karmee, S.K. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef]
- Xiao, Z.H.; Hou, X.Q.; Hwang, S.S.; Li, H.M. The biocomposites properties of compounded poly (lactic acid) with untreated and treated spent coffee grounds. J. Appl. Polym. Sci. 2022, 139, e53092. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Nguyen, Q.T. Hybrid biocomposites based on used coffee grounds and epoxy resin: Mechanical properties and fire resistance. Int. J. Chem. Eng. 2021, 2021, 1919344. [Google Scholar] [CrossRef]
- Paria, S.; Kim, G.; Lee, J.W.; Jeong, S.; Sahu, P.; Park, S.H.; Oh, J.S. Ecopolyols from Spent Coffee Grounds Through Acid Liquefaction Using Polyol: Synthesis and its Optimization. J. Polym. Environ. 2024, 32, 1619–1630. [Google Scholar] [CrossRef]
- Olszewski, A.; Kosmela, P.; Vēvere, L.; Olszewski, A.; Kosmela, P.; Vēvere, L.; Kirpluks, M.; Cabulis, U.; Piszczyk, Ł. Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams. Sci. Rep. 2024, 14, 812. [Google Scholar] [CrossRef]
- Arias, A.; Ioannidou, S.M.; Giannakis, N.; Feijoo, G.; Moreira, M.T.; Koutinas, A. Review of potential and prospective strategies for the valorization of coffee grounds within the framework of a sustainable and circular bioeconomy. Ind. Crops Prod. 2023, 205, 117504. [Google Scholar] [CrossRef]
- Auguścik-Królikowska, M.; Ryszkowska, J.; Ambroziak, A.; Szczepkowski, L.; Oliwa, R.; Oleksy, M. The structure and properties of viscoelastic polyurethane foams with fillers from coffee grounds. Polimery 2020, 65, 708–718. [Google Scholar] [CrossRef]
- Funabashi, M.; Hirose, S.; Hatakeyama, T.; Hatakeyama, H. Effect of filler shape on mechanical properties of rigid polyurethane composites containing plant particles. Macromol. Symp. 2003, 197, 231–242. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hatakeyama, T. Lignin Structure, Properties, and Applications. In Biopolymers; Advances in Polymer Science; Abe, A., Dusek, K., Kobayashi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 232, pp. 1–63. [Google Scholar] [CrossRef]
- Biazatti, M.J.; de Carvalho Miranda, J.C. Soybean-based concept biorefinery. Biofuels Bioprod. Biorefin. 2021, 15, 980–1005. [Google Scholar] [CrossRef]
- Kakarla, V.M. Preparation of Soy Augmented Water Blown Polyurethane Foam and Evaluation of Mechanical Properties. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2003. [Google Scholar]
- Ji, D.; Fang, Z.; He, W.; Luo, Z.; Jiang, X.; Wang, T.; Guo, K. Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Ind. Crops Prod. 2015, 74, 76–82. [Google Scholar] [CrossRef]
- EKOPRODUR PM4032 Characteristics Sheet. Available online: https://www.products.pcc.eu/wp-content/uploads/import/broszura/2020-05-22/2b322bd8-5c34-4786-bd88-fffce8e829d9/ekoprodur-pm4032_broszura_en.pdf (accessed on 28 February 2025).
- ISO 18122:2022(en); Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18122:ed-2:v1:en (accessed on 8 July 2025).
- Magiera, A.; Kuźnia, M.; Jerzak, W. Analysis of the Structural, Chemical, and Mechanical Characteristics of Polyurethane Foam Infused with Waste from Thermal Processing. Materials 2025, 18, 1327. [Google Scholar] [CrossRef]
- Magiera, A.; Kuźnia, M.; Błoniarz, A.; Magdziarz, A. Rigid Polyurethane Foams Modified with Soybean-Husk-Derived Ash as Potential Insulating Materials. Processes 2023, 11, 3416. [Google Scholar] [CrossRef]
- Zakrzewska, P.; Kuźnia, M.; Zygmunt-Kowalska, B.; Magiera, A.; Magdziarz, A. Utilization of Sunflower Husk Ash in the Production of Polyurethane Materials. Energies 2023, 16, 8080. [Google Scholar] [CrossRef]
- ISO 1716:2018; Reaction to Fire Tests for Products—Determination of the Gross Heat of Combustion (Calorific Value). International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/70177.html (accessed on 8 July 2025).
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/57957.html (accessed on 8 July 2025).
- Kaczorek-Chrobak, K.; Fangrat, J.; Papis, B.K. Calorimetric Behaviour of Electric Cables. Energies 2021, 14, 1007. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity. Part 2: Transient Plane Heat Source (Hot Disc) Method. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/81836.html (accessed on 8 July 2025).
- ISO 11358-1:2022; Plastics—Thermogravimetry (TG) of Polymers. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/79999.html (accessed on 11 July 2025).
- Kairytė, A.; Kizinievič, O.; Kizinievič, V.; Kremensas, A. Synthesis of biomass-derived bottom waste ash based rigid biopolyurethane composite foams: Rheological behaviour, structure and performance characteristics. Compos. Part A 2019, 117, 193–201. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Kairytė, A.; Kremensas, A. Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polym. Test. 2020, 86, 106479. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Kairytė, A. Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polym. Test. 2020, 87, 106534. [Google Scholar] [CrossRef]
- Naldzhiev, D.; Mumovic, D.; Strlic, M. Polyurethane insulation and household products–A systematic review of their impact on indoor environmental quality. Build. Environ. 2020, 169, 106559. [Google Scholar] [CrossRef]
- Dukarska, D.; Mirski, R. Current Trends in the Use of Biomass in the Manufacture of Rigid Polyurethane Foams: A Review. J. Compos. Sci. 2024, 8, 286. [Google Scholar] [CrossRef]
- Bo, G.; Xu, X.; Tian, X.; Wu, J.; Yan, Y. Enhancing the Fire Safety and Smoke Safety of Bio–Based Rigid Polyurethane Foam via Inserting a Reactive Flame Retardant Containing P@N and Blending Silica Aerogel Powder. Polymers 2021, 13, 2140. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Chen, Q.; Luo, F.; Cao, C. Effect of bamboo flour on flame retardancy and smoke suppression of polypropylene/ammonium polyphosphate composites. Front. Mater. 2020, 7, 574924. [Google Scholar] [CrossRef]
- Bajer, K.; Kaczmarek, H.; Dzwonkowski, J.; Stasiek, A.; Ołdak, D. Photochemical and thermal stability of degradable PE/paper waste composites obtained by extrusion. J. Appl. Polym. Sci. 2007, 103, 2197–2206. [Google Scholar] [CrossRef]
- Głowacz-Czerwonka, D.; Zakrzewska, P.; Zygmunt-Kowalska, B.; Zarzyka, I. Thermal and Flammability Analysis of Polyurethane Foams with Solid and Liquid Flame Retardants: Comparative Study. Polymers 2025, 17, 1977. [Google Scholar] [CrossRef]
- Jasiūnas, L.; McKenna, S.T.; Bridžiuvienė, D.; Miknius, L. Mechanical, Thermal Properties and Stability of Rigid Polyurethane Foams Produced with Crude-Glycerol Derived Biomass Biopolyols. J. Polym. Environ. 2020, 28, 1378–1389. [Google Scholar] [CrossRef]
- Otaru, A.J.; Albin Zaid, Z.A.A. Thermal Degradation of Palm Fronds/Polypropylene Bio-Composites: Thermo-Kinetics and Convolutional-Deep Neural Networks Techniques. Polymers 2025, 17, 1244. [Google Scholar] [CrossRef]
- Sikora, J.W.; Majewski, Ł.; Puszka, A. Modern Biodegradable Plastics—Processing and Properties Part II. Materials 2021, 14, 2523. [Google Scholar] [CrossRef]
- Mizera, K.; Sałasińska, K.; Ryszkowska, J.; Kurańska, M.; Kozera, R. Effect of the Addition of Biobased Polyols on the Thermal Stability and Flame Retardancy of Polyurethane and Poly(urea)urethane Elastomers. Materials 2021, 14, 1805. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, D.; Jin, Q.; Deng, S.; Stančin, H.; Tan, H.; Mikulčić, H. Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures. Fuel Process. Technol. 2019, 194, 106127. [Google Scholar] [CrossRef]
- Reinerte, S.; Jurkjane, V.; Cabulis, U.; Viksna, A. Identification and Evaluation of Hazardous Pyrolysates in Bio-Based Rigid Polyurethane-Polyisocyanurate Foam Smoke. Polymers 2021, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Kosmela, P.; Piszczyk, Ł. Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics. J. Polym. Sci. 2021, 59, 1095–1108. [Google Scholar] [CrossRef]
- Dutta, S.; Kim, N.K.; Das, R.; Bhattacharyya, D. Evaluating Orientation Effects on the Fire Reaction Properties of Flax-Polypropylene Composites. Polymers 2021, 13, 2586. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef]
- Zhang, J.; Hori, N.; Takemura, A. Effect of natural biomass fillers on the stability, degradability, and elasticity of crop straws liquefied polyols-based polyurethane foams. J. Appl. Polym. Sci. 2023, 140, e53324. [Google Scholar] [CrossRef]
- Guo, H.; Gao, Q.; Ouyang, C.; Zheng, K.; Xu, W. Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. J. Appl. Polym. Sci. 2015, 132, 42349. [Google Scholar] [CrossRef]
- Lee, D.I.; Ha, Y.H.; Jeon, H.; Kim, S.H. Preparation and Properties of Polyurethane Composite Foams with Silica-Based Fillers. Appl. Sci. 2022, 12, 7418. [Google Scholar] [CrossRef]
- Liszkowska, J.; Czupryński, B.; Paciorek-Sadowska, J. The influence silica, kaolin and epoxy resin on heat and thermal properties of rigid polyurethane–polyisocyanurate foams. J. Cell. Plast. 2013, 49, 375–390. [Google Scholar] [CrossRef]
- Michałowski, S.; Hebda, E.; Pielichowski, K. Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J. Therm. Anal. Calorim. 2017, 130, 155–163. [Google Scholar] [CrossRef]
Sample Name | Filler | |||||
---|---|---|---|---|---|---|
Brewers’ Spent Grain (B) | Coffee Grounds (C) | Soybean Husk (S) | Brewers’ Spent Grain Ash (Ba) | Coffee Grounds Ash (Ca) | Soybean Husk Ash (Sa) | |
PU | ||||||
PU+B | ✕ | |||||
PU+C | ✕ | |||||
PU+S | ✕ | |||||
PU+BIO | ✕ | ✕ | ✕ | |||
PU+Ba | ✕ | |||||
PU+Ca | ✕ | |||||
PU+Sa | ✕ | |||||
PU+BIOa | ✕ | ✕ | ✕ |
Sample Name | N, % wt. | C, % wt. | H, % wt. | Qs, kJ g−1 | λ, mW m−1K−1 |
---|---|---|---|---|---|
PU | 6.56 | 69.45 | 10.86 | 26.14 | 34.93 ± 0.07 |
PU+B | 6.73 | 69.07 | 10.93 | 26.69 | 34.83 ± 0.01 |
PU+C | 6.84 | 69.63 | 10.99 | 26.45 | 35.20 ± 0.02 |
PU+S | 7.22 | 71.03 | 11.08 | 26.51 | 33.92 ± 0.03 |
PU+BIO | 6.98 | 69.15 | 11.11 | 26.74 | 34.79 ± 0.01 |
PU+Ba | 5.71 | 64.47 | 11.14 | 25.10 | 37.37 ± 0.03 |
PU+Ca | 6.82 | 67.51 | 10.46 | 25.82 | 36.12 ± 0.34 |
PU+Sa | 6.80 | 67.79 | 10.40 | 26.02 | 34.97 ± 0.04 |
PU+BIOa | 6.62 | 66.65 | 10.28 | 25.90 | 34.88 ± 0.03 |
Sample Name | TIG, s | PeakHRR, kW m−2 | MeanHRR, kW m−2 | THR, MJ m−2 | PeakEHC, MJ kg−1 | TSP, m2 | TSR, m2 m−2 | Δm, – |
---|---|---|---|---|---|---|---|---|
PU | 4 | 193.0 | 16.9 | 30.4 | 79.8 | 7.9 | 890.3 | 10.2 |
PU+B | 3 | 212.8 | 36.1 | 20.5 | 74.1 | 8.0 | 908.0 | 9.8 |
PU+C | 5 | 194.9 | 28.6 | 22.4 | 76.7 | 8.1 | 914.7 | 13.4 |
PU+S | 2 | 205.1 | 11.4 | 20.7 | 77.4 | 7.5 | 845.4 | 10.0 |
PU+BIO | 21 | 156.2 | 26.3 | 21.1 | 79.4 | 5.2 | 585.0 | 9.7 |
PU+Ba | 45 | 145.4 | 13.4 | 24.2 | 78.7 | 5.3 | 602.9 | 9.1 |
PU+Ca | 4 | 167.9 | 19.5 | 35.2 | 77.3 | 5.0 | 564.0 | 8.6 |
PU+Sa | 7 | 155.8 | 10.6 | 19.3 | 71.8 | 6.7 | 761.1 | 11.4 |
PU+BIOa | 3 | 189.9 | 15.9 | 28.7 | 77.5 | 7.3 | 825.8 | 11.8 |
Sample Name | T5%, °C | T10%, °C | T50%, °C | TDTGmax1, °C | TDTGmax2, °C | Residue at 600 °C, % | Residue at 800 °C, % |
---|---|---|---|---|---|---|---|
PU | 247 | 284 | 347 | 335 | 626 | 15.07 | 0.59 |
PU+B | 211 | 263 | 347 | 340 | 623 | 14.85 | 0.23 |
PU+C | 206 | 264 | 345 | 337 | 621 | 13.75 | 0.18 |
PU+S | 200 | 247 | 344 | 335 | 618 | 15.03 | 0.77 |
PU+BIO | 218 | 271 | 343 | 335 | 622 | 13.42 | 0.16 |
PU+Ba | 200 | 248 | 349 | 343 | 619 | 16.98 | 6.17 |
PU+Ca | 208 | 260 | 345 | 311 | 617 | 19.03 | 4.60 |
PU+Sa | 225 | 274 | 344 | 319 | 614 | 16.98 | 2.26 |
PU+BIOa | 196 | 250 | 341 | 317 | 614 | 17.09 | 3.68 |
Sample Name | Onset Temperature, °C | Peak Temperature, °C | Specific Enthalpy Change, J g−1 |
---|---|---|---|
PU | 285 | 334 | −104 |
PU+B | 273 | 334 | −156 |
PU+C | 267 | 333 | −149 |
PU+S | 269 | 334 | −133 |
PU+BIO | 253 | 334 | −259 |
PU+Ba | 286 | 340 | −85 |
PU+Ca | 250 | 302 | −196 |
PU+Sa | 282 | 318 | −172 |
PU+BIOa | 272 | 315 | −180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magiera, A.; Kuźnia, M.; Stanik, R.; Kaczorek-Chrobak, K.; Gude, M.; Papis, B.K. Flammability and Thermal Properties of Rigid Polyurethane Foams Modified with Waste Biomass and Ash. Materials 2025, 18, 4570. https://doi.org/10.3390/ma18194570
Magiera A, Kuźnia M, Stanik R, Kaczorek-Chrobak K, Gude M, Papis BK. Flammability and Thermal Properties of Rigid Polyurethane Foams Modified with Waste Biomass and Ash. Materials. 2025; 18(19):4570. https://doi.org/10.3390/ma18194570
Chicago/Turabian StyleMagiera, Anna, Monika Kuźnia, Rafał Stanik, Katarzyna Kaczorek-Chrobak, Maik Gude, and Bartłomiej K. Papis. 2025. "Flammability and Thermal Properties of Rigid Polyurethane Foams Modified with Waste Biomass and Ash" Materials 18, no. 19: 4570. https://doi.org/10.3390/ma18194570
APA StyleMagiera, A., Kuźnia, M., Stanik, R., Kaczorek-Chrobak, K., Gude, M., & Papis, B. K. (2025). Flammability and Thermal Properties of Rigid Polyurethane Foams Modified with Waste Biomass and Ash. Materials, 18(19), 4570. https://doi.org/10.3390/ma18194570