Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEDOT: PSS-MSA Thin Films and Characterization Methods
2.3. Measurements and Uncertainties
3. Results and Discussion
3.1. Theoretical Background
3.1.1. Dielectric Model of PEDOT:PSS Thin Films—Nanocomposite Approach
3.1.2. Model of Electrical Conductivity of PEDOT:PSS Thin Films—Composite Approach
3.2. AFM
3.3. Studies of Intra-Chain Charge Carrier Conduction in MSA Doped PEDOT:PSS Thin Films
3.4. Studies of Inter-Chain Charge Carrier Conduction in MSA Doped PEDOT:PSS Thin Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Abdelhamid, M.E.; O’Mullane, A.P.; Snook, G.A. Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 2015, 5, 11611–11626. [Google Scholar] [CrossRef]
- Wu, X.; Fu, W.; Chen, H. Conductive polymers for flexible and stretchable organic optoelectronic applications. ACS Appl. Polym. Mater. 2022, 4, 4609–4623. [Google Scholar] [CrossRef]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Worfolk, B.J.; Andrews, S.C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M.F.; Mannsfeld, S.C.B.; Bao, Z. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Stott, N.E.; Zeng, J.; Li, Y.; Ouyang, J.; Chu, L.; Song, W. PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 2023, 11, 18561–18591. [Google Scholar] [CrossRef]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.; Kim, B.; Lee, K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef]
- Shi, Z.F.; Sun, X.G.; Wu, D.; Xu, T.T.; Zhuang, S.W.; Tian, Y.T.; Li, X.J.; Du, G.T. High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure. Nanoscale 2016, 8, 10035–10042. [Google Scholar] [CrossRef]
- Bubnova, O.; Khan, Z.U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433. [Google Scholar] [CrossRef]
- La Notte, L.; Villari, E.; Palma, A.L.; Sacchetti, A.; Giangregorio, M.M.; Bruno, G.; Di Carlo, A.; Bianco, G.V.; Reale, A. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale 2017, 9, 62–69. [Google Scholar] [CrossRef]
- Dauzon, E.; Mansour, A.E.; Niazi, M.R.; Munir, R.; Smilgies, D.M.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A. Conducting and stretchable PEDOT:PSS electrodes: Role of additives on self-assembly, morphology, and transport. ACS Appl. Mater. Interfaces 2019, 11, 17570–17582. [Google Scholar] [CrossRef]
- Hosseini, E.; Kollath, V.O.; Karan, K. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C 2020, 8, 3982–3990. [Google Scholar] [CrossRef]
- Shahrim, N.A.; Ahmad, Z.; Azman, A.W.; Buys, Y.F.; Sarifuddin, N. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021, 2, 7118–7138. [Google Scholar] [CrossRef]
- Sangeeth, C.S.S.; Jaiswal, M.; Menon, R. Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. J. Phys. Condens. Matter 2009, 21, 072101. [Google Scholar] [CrossRef]
- Takano, T.; Masunaga, H.; Fujiwara, A.; Okuzaki, H.; Sasaki, T. PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 2012, 45, 3859–3865. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Song, Z.; Wang, Y.-X.; Hu, W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 2024, 53, 10575–10603. [Google Scholar] [CrossRef]
- Dong, J.; Portale, G. Role of the Processing Solvent on the Electrical Conductivity of PEDOT:PSS. Adv. Mater. Interfaces 2020, 7, 2000641. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Wei, X.; Wu, J.; Guo, J.; Zhao, B.; Wang, H.; Chen, S.; Dou, Y. Morphological modulation to improve thermoelectric performances of PEDOT:PSS films by DMSO vapor post-treatment. Synth. Met. 2021, 271, 116628. [Google Scholar] [CrossRef]
- Wang, C.; Sun, K.; Fu, J.; Chen, R.; Li, M.; Zang, Z.; Liu, X.; Li, B.; Gong, H.; Ouyang, J. Enhancement of conductivity and thermoelectric property of PEDOT:PSS via acid doping and single post-treatment for flexible power generator. Adv. Sustain. Syst. 2018, 2, 1800085. [Google Scholar] [CrossRef]
- Park, J.; Song, J.H.; Jang, J.G.; Kwak, J. High Conductivity in PEDOT:PSS Thin-Films by Secondary Doping with Superacid Vapor: Mechanisms and Application to Thermoelectrics. Adv. Phys. Res. 2025, 4, 2400151. [Google Scholar] [CrossRef]
- Meng, W.; Ge, R.; Li, Z.; Tong, J.; Liu, T.; Zhao, Q.; Xiong, S.; Jiang, F.; Mao, L.; Zhou, Y. Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells. ACS Appl. Mater. Interfaces 2015, 7, 14089–14094. [Google Scholar] [CrossRef]
- Chen, L.; Shen, P.; Zhao, T.; Liu, M. Enhancing the conductivity of PEDOT:PSS films by the confinement of ice crystals. Small Methods 2024, 8, 2300979. [Google Scholar] [CrossRef]
- Chen, S.; Kühne, P.; Stanishev, V.; Knight, S.; Brooke, R.; Petsagkourakis, I.; Crispin, X.; Schubert, M.; Darakchieva, V.; Jonsson, M.P. On the anomalous optical conductivity dispersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude–Lorentz model. J. Mater. Chem. C 2019, 7, 4350–4362. [Google Scholar] [CrossRef]
- Yousefian, H.; Hashemi, S.A.; Babaei-Ghazvini, A.; Acharya, B.; Ghaffarkhah, A.; Arjmand, M. Beyond acid treatment of PEDOT:PSS: Decoding mechanisms of electrical conductivity enhancement. Mater. Adv. 2024, 5, 4699–4714. [Google Scholar] [CrossRef]
- Deng, J.; Gao, Y.; Che, Y.; Wang, X.; Sun, J.; Liao, Z.; Wang, X.; Li, Y.; Li, X.; Zhang, J.; et al. Acid doping of PEDOT:PSS strengthens interfacial compatibility toward efficient and stable perovskite solar cells. ACS Appl. Energy Mater. 2024, 7, 9577–9585. [Google Scholar] [CrossRef]
- Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 2018, 30, 1800075. [Google Scholar] [CrossRef]
- Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; van der Gon, A.D.; Louwet, F.; Fahlman, M.; Groenendaal, L.; De Schryver, F.; Salaneck, W.R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. B Polym. Phys. 2003, 41, 2561–2583. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Keene, S.T.; Michaels, W.; Melianas, A.; Quill, T.J.; Fuller, E.J.; Giovannitti, A.; McCulloch, I.; Talin, A.A.; Tassone, C.J.; Qin, J.; et al. Efficient electronic tunneling governs transport in conducting polymer-insulator blends. J. Am. Chem. Soc. 2022, 144, 10368–10376. [Google Scholar] [CrossRef]
- Kaiser, A.B. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 2001, 64, 1–49. [Google Scholar] [CrossRef]
- Vissenberg, M.C.J.M.; Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 1998, 57, 12964–12971. [Google Scholar] [CrossRef]
- Aleshin, A.N.; Williams, S.R.; Heeger, A.J. Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Synth. Met. 1998, 94, 173–177. [Google Scholar] [CrossRef]
- Nardes, A.M.; Kemerink, M.; Janssen, R.A.J. Anisotropic hopping conduction in spin-coated PEDOT:PSS thin films. Phys. Rev. B 2007, 76, 085208. [Google Scholar] [CrossRef]
- Chen, S.; Liang, L.; Zhang, Y.; Lin, K.; Yang, M.; Zhu, L.; Yang, X.; Zang, L.; Lu, B. PEDOT:PSS-based Electronic Materials: Preparation, Performance Tuning, Processing, Applications, and Future Prospect. Prog. Polym. Sci. 2025, 166, 101990. [Google Scholar] [CrossRef]
- Stroud, D.J. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 1975, 12, 3368–3373. [Google Scholar] [CrossRef]
- Bednarski, H.; Ismail, A.A.A.; Godzierz, M.; Marcinkowski, A.; Khan, M.R.; Jarząbek, B.; Hajduk, B.; Kumari, P. Nanostructure-dependent electrical conductivity model within the framework of the generalized effective medium theory applied to poly(3-hexyl)thiophene thin films. Polymers 2024, 16, 3227. [Google Scholar] [CrossRef] [PubMed]
- Stöcker, T.; Köhler, A.; Moos, R. Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. B Polym. Phys. 2012, 50, 976–983. [Google Scholar] [CrossRef]
- Bednarski, H.; Hajduk, B.; Jurusik, J.; Jarząbek, B.; Domański, M.; Łaba, K.; Wanic, A.; Łapkowski, M. The influence of PEDOT to PSS ratio on the optical properties of PEDOT:PSS thin solid films—Insight from spectroscopic ellipsometry. Acta Phys. Pol. A 2016, 130, 1242–1244. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Mackay, T.G.; Lakhtakia, A. Bruggeman formalism versus “Bruggeman formalism”: Particulate composite materials comprising oriented ellipsoidal particles. J. Nanophotonics 2012, 6, 069501. [Google Scholar] [CrossRef]
- Skomski, R.; Li, J.; Zhou, J.; Sellmyer, D.J. Multiscale phenomena in Bruggeman composites. MRS Online Proc. Libr. 2005, 86, 7–22. [Google Scholar] [CrossRef]
- McLachlan, D.S. Measurement and analysis of a model dual-conductivity medium using a generalised effective-medium theory. J. Phys. C Solid State Phys. 1988, 21, 1521–1531. [Google Scholar] [CrossRef]
- Yunos, N.M.; Khairuddin, T.K.A.; Shafie, S.; Ahmad, T.; Lionheart, W. The depolarization factors for ellipsoids and some of their properties. Malays. J. Fundam. Appl. Sci. 2019, 15, 784–789. [Google Scholar]
- Jain, K.; Mehandzhiyski, A.Y.; Zozoulenko, I.; Wågberg, L. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. J. Colloid Interface Sci. 2021, 584, 57–66. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Electrodynamics, 5th ed.; Cambridge University: Cambridge, UK, 2023. [Google Scholar]
- Zuppiroli, L.; Bussac, M.N.; Paschen, S.; Chauvet, O.; Forro, L. Hopping in disordered conducting polymers. Phys. Rev. B 1994, 50, 5196–5203. [Google Scholar] [CrossRef]
- Nardes, A.M.; Janssen, R.A.J.; Kemerink, M. A morphological model for the solvent-enhanced conductivity of PEDOT:PSS thin films. Adv. Func, Mater. 2008, 18, 865–871. [Google Scholar] [CrossRef]
- Nardes, A.M.; Kemerink, M.; Janssen, R.A.J.; Bastiaansen, J.A.M.; Kiggen, N.M.M.; Langeveld, B.M.W.; van Breemen, A.J.J.M.; de Kok, M.M. Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 2007, 19, 1196–1200. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.A.A.; Bednarski, H.; Marcinkowski, A. Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films. Materials 2025, 18, 4569. https://doi.org/10.3390/ma18194569
Ismail AAA, Bednarski H, Marcinkowski A. Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films. Materials. 2025; 18(19):4569. https://doi.org/10.3390/ma18194569
Chicago/Turabian StyleIsmail, Ayman A. A., Henryk Bednarski, and Andrzej Marcinkowski. 2025. "Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films" Materials 18, no. 19: 4569. https://doi.org/10.3390/ma18194569
APA StyleIsmail, A. A. A., Bednarski, H., & Marcinkowski, A. (2025). Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films. Materials, 18(19), 4569. https://doi.org/10.3390/ma18194569