Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application
Abstract
1. Introduction
2. Fundamental Principles of Radiative Cooling
3. Biomimetic Passive Daytime Radiative Cooling
3.1. Structural Biomimicry
3.1.1. Surface Micro- and Nanostructures
3.1.2. Photonic Crystal Structure
3.1.3. Hierarchically Porous Structure
3.2. Material Biomimicry
3.3. Adaptive Bionics
3.3.1. Thermal-Induced Adaptive Response
3.3.2. Photoinduced Self-Adaptation
3.3.3. Humidity-Induced Adaptive Regulation
3.3.4. Mechanism-Induced Adaptive Response
4. Practical Biomimetic Radiative Cooling Technology
4.1. Building Energy Efficiency
4.2. Personal Thermal Management
4.3. Electronic Devices
4.4. Thermoelectric Generator
4.5. Water Collection
5. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perera, A.T.; Nik, V.M.; Chen, D.; Scartezzini, J.L.; Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Brown, J.S.; Domanski, P.A. Review of alternative cooling technologies. Appl. Therm. Eng. 2014, 64, 252–262. [Google Scholar] [CrossRef]
- Munday, J.N. Tackling Climate Change through Radiative Cooling. Joule 2019, 3, 2057–2060. [Google Scholar] [CrossRef]
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [Google Scholar] [CrossRef]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.; Mahlia, T.; Zare, A.; Saksahdan, T.; Metselaar, H. Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 2014, 32, 642–650. [Google Scholar] [CrossRef]
- Olwi, I.A.; Sabbagh, J.A.; Khalifa, A.M.A. Mathematical modeling of passive dry cooling for power plants in arid land. Sol. Energy 1992, 48, 279–286. [Google Scholar] [CrossRef]
- Zhu, L.; Raman, A.P.; Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA 2015, 112, 12282–12287. [Google Scholar] [CrossRef]
- Yin, X.; Yang, R.; Tan, G.; Fan, S. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791. [Google Scholar] [CrossRef]
- Kiyaee, S.; Khalilmoghadam, P.; Shafii, M.B.; Moshfegh, A.Z.; Hu, M. Investigation of a radiative sky cooling module using phase change material as the energy storage. Appl. Energy 2022, 321, 119357. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Suhendri; Cao, J.; Wang, Q.; Riffat, S.; Su, Y.; Pei, G. Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study. Energy 2022, 251, 123986. [Google Scholar] [CrossRef]
- Dong, M.; Chen, N.; Zhao, X.; Fan, S.; Chen, Z. Nighttime radiative cooling in hot and humid climates. Opt. Express 2019, 27, 31587–31598. [Google Scholar] [CrossRef]
- Liu, R.; Wang, S.; Zhou, Z.; Zhang, K.; Wang, G.; Chen, C.; Long, Y. Materials in radiative cooling technologies. Adv. Mater. 2024, 37, e2401577. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Huang, Z.; Zhao, Z.; Qiu, J.; Ruan, X. Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High Figure of Merit. Cell Rep. Phys. Sci. 2020, 1, 100221. [Google Scholar]
- Li, M.; Lin, C.; Li, K.; Ma, W.; Dopphoopha, B.; Li, Y.; Huang, B. A UV-Reflective Organic–Inorganic Tandem Structure for Efficient and Durable Daytime Radiative Cooling in Harsh Climates. Small 2023, 19, e2301159. [Google Scholar] [CrossRef] [PubMed]
- Bijarniya, J.P.; Sarkar, J.; Tiwari, S.; Maiti, P. Experimentally optimized particle–polymer matrix structure for efficient daytime radiative cooling. J. Renew. Sustain. Energy 2022, 14, 055101. [Google Scholar] [CrossRef]
- Felicelli, A.; Katsamba, I.; Barrios, F.; Zhang, Y.; Guo, Z.; Peoples, J.; Chiu, G.; Ruan, X. Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling. Cell Rep. Phys. Sci. 2022, 3, 101058. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Yao, P.; Ruan, X. Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Lim, H.; Chae, D.; Son, S.; Ha, J.; Lee, H. CaCO3 micro particle-based radiative cooling device without metal reflector for entire day. Mater. Today Commun. 2022, 32, 103990. [Google Scholar]
- Hu, Z.; Qiu, Y.; Zhou, J.; Li, Q. Smart Flexible Porous Bilayer for All-Day Dynamic Passive Cooling. Small Sci. 2024, 4, 2300237. [Google Scholar] [CrossRef]
- Ma, C.-Q.; Xue, C.-H.; Fan, W.; Guo, X.-J.; Cheng, J.; Huang, M.-C.; Wang, H.-D.; Wu, Y.-G.; Liu, B.-Y.; Lv, S.-Q. Synchronous Radiative Cooling and Thermal Insulation in SiO2/Poly(vinyl alcohol) Composite Aerogel for Energy Savings in Building Thermal Management. ACS Sustain. Chem. Eng. 2024, 12, 5695–5704. [Google Scholar] [CrossRef]
- Han, D.; Wang, C.; Han, C.B.; Cui, Y.; Ren, W.R.; Zhao, W.K.; Jiang, Q.; Yan, H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO2 Aerogel Coating for Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2024, 16, 9303–9312. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, B. Microscopic mechanism and applications of radiative cooling materials: A comprehensive review. Mater. Today Phys. 2025, 51, 101643. [Google Scholar] [CrossRef]
- Xie, F.; Jin, W.; Nolen, J.R.; Pan, H.; Yi, N.; An, Y.; Zhang, Z.; Kong, X.; Zhu, F.; Jiang, K.; et al. Subambient daytime radiative cooling of vertical surfaces. Science 2024, 386, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Yengannagari, A.R.; Matsumori, K.; Patel, P.; Datla, A.; Trindade, K.; Amarsanaa, E.; Zhao, T.; Köhler, U.; Busko, D.; et al. Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial. Nat. Commun. 2024, 15, 3798. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Li, C.; Gao, W.; Chen, Y. Emerging colored and transparent radiative cooling: Fundamentals, progress, and challenges. Mater. Today 2025, 83, 355–381. [Google Scholar] [CrossRef]
- Hervé, A.; Drévillon, J.; Ezzahri, Y.; Joulain, K. Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure. J. Quant. Spectrosc. Radiat. Transf. 2018, 221, 155–163. [Google Scholar] [CrossRef]
- Lee, K.W.; Yi, J.; Kim, M.K.; Kim, D.R. Transparent radiative cooling cover window for flexible and foldable electronic displays. Nat. Commun. 2024, 15, 4443. [Google Scholar] [CrossRef]
- Alshammari, A.; Almatrafi, E.; Rady, M. Radiative coatings for solar cell cooling: Materials, and applications. Sol. Energy 2024, 273, 112545. [Google Scholar] [CrossRef]
- Laatioui, S.; Benlattar, M.; Mazroui, M.; Saadouni, K. Zinc monochalcogenide thin films ZnX (X = S, Se, Te) as radiative cooling materials. Optik 2018, 166, 24–30. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Alessandri, E. Syntheses, Properties, and Applications of ZnS-Based Nanomaterials. Appl. Nano 2024, 5, 116–142. [Google Scholar] [CrossRef]
- Peng, X.; Wu, Z.; Ding, Y. Research on CdSe/ZnS Quantum Dots-Doped Polymer Fibers and Their Gain Characteristics. Nanomaterials 2024, 14, 1463. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Ruan, W.; Zhang, M.; Lin, M. Recent Progress in Modification of Polyphenylene Oxide for Application in High-Frequency Communication. Materials 2024, 17, 1086. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Li, E.; Tang, B.; Yuan, Y. Polyphenylene oxide/SiO2 composites: Towards ultra-low dielectric loss and high thermal conductivity of microwave substrates. Appl. Surf. Sci. 2024, 672, 160809. [Google Scholar] [CrossRef]
- Park, W.; Han, J.; Kim, J.; Moon, S.Y. The effect of gas composition on the properties of silicon oxynitride thin film prepared by low-pressure inductively coupled Ar/N2 plasma. Thin Solid Film. 2023, 764, 139629. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Xu, S.; Tan, G.; Yin, X.; Yang, R. Radiative sky cooling: Fundamental principles, materials, and applications. Appl. Phys. Rev. 2019, 6, 021306. [Google Scholar] [CrossRef]
- Gangisetty, G.; Zevenhoven, R. A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights. Energies 2023, 16, 1975. [Google Scholar] [CrossRef]
- Suryawanshi, C.N.; Lin, C.T. Radiative cooling: Lattice quantization and surface emissivity in thin coatings. ACS Appl. Mater. Interfaces 2009, 1, 1334–1338. [Google Scholar] [CrossRef]
- Hong, D.; Park, S.Y. Realization of highly thermally conductive radiative cooling paint. J. Korean Phys. Soc. 2024, 86, 91–98. [Google Scholar] [CrossRef]
- Hong, D.; Lee, Y.J.; Jeon, O.S.; Lee, I.S.; Lee, S.H.; Won, J.Y.; Jeon, Y.P.; La, Y.; Kim, S.; Park, G.-S.; et al. Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 2024, 15, 4457. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Han, D.; Zhou, K.; Koh, S.W.; Ge, J.; Tan, J.Y.; Ng, B.F.; Chen, Z.; Cai, L.; Li, H. Electrostatic repellent dispersion method for green and cost-effective aqueous radiative cooling paint. Build. Environ. 2025, 269, 112462. [Google Scholar] [CrossRef]
- Kim, G.; Baek, S.; Choi, W.; Lee, A.; Lee, S.; Jeong, H.; Sung, Y. Stability, surface tension, and thermal conductivity of Al2O3/water nanofluids according to different types of alcohol and their proportion. Case Stud. Therm. Eng. 2021, 28, 101385. [Google Scholar] [CrossRef]
- Li, M.; Ge, X.; Wu, P.; Chu, H.; Li, Z. Study of green modification of nano-Al2O3 and enhanced scratch resistance of water-based polyacrylate varnishes. J. Nanopart. Res. 2025, 27, 20. [Google Scholar] [CrossRef]
- Osorio-Vargas, P.; Pais-Ospina, D.; Marin-Silva, D.A.; Pinotti, A.; Damonte, L.; Canneva, A.; Donadelli, J.A.; da Costa, L.P.; Pizzio, L.R.; Cecilia, C.; et al. Torres. TiO2 nanorods doped with g-C3N4—Polyethylene composite coating for self-cleaning applications. Mater. Chem. Phys. 2022, 288, 126356. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, Y.; Zhang, J. A novel perspective for reflective cooling composites: Influence of the difference between the effective refractive index of polymeric matrix and inorganic functional particles. Constr. Build. Mater. 2019, 223, 928–938. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Mandal, J.; Chen, X.; Yan, H.; He, Y.; Yu, N.; Yang, Y. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Nano Lett. 2021, 21, 1412–1418. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Y.; Xing, J.; Wang, X.; Liu, M.; Zhang, Y.; Xu, S.; Li, D.; Xiong, Y.; Shen, Z.; et al. High-performance nanomembranes integrating radiative cooling and alternating current luminescence for smart wearable. Chem. Eng. J. 2025, 505, 159214. [Google Scholar] [CrossRef]
- Guo, C.; Tang, H.; Wang, P.; Xu, Q.; Pan, H.; Zhao, X.; Fan, F.; Li, T.; Zhao, D. Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 2024, 15, 6100. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Wang, Y.; Han, B.; Han, Z. Effects of nano Al2O3 distribution on thermal conductivity and mechanical property of Al2O3/PE-EVA composites. Acta Mater. Compos. Sin. 2015, 32, 1286–1293. [Google Scholar]
- Piao, L.Y.; Liu, X.Z.; Mao, L.J.; Ju, S.T. Preparation of Nano-Alumina by Reverse Microemulsion Method. Acta Phys. Chim. Sin. 2009, 25, 2232–2236. [Google Scholar] [CrossRef]
- Dong, E.; Wang, Y.; Yang, S.T.; Yuan, Y.; Nie, H.; Chang, Y.; Wang, L.; Liu, Y.; Wang, H. Toxicity of nano gamma alumina to neural stem cells. J. Nanosci. Nanotechnol. 2011, 11, 7848–7856. [Google Scholar] [CrossRef] [PubMed]
- Gruber, D.; Ruiz-Agudo, C.; Rao, A.; Pasler, S.; Cölfen, H.; Sturm, E.V. Complex Coacervates: From Polyelectrolyte Solutions to Multifunctional Hydrogels for Bioinspired Crystallization. Crystals 2024, 14, 959. [Google Scholar] [CrossRef]
- An, Y.; Shu, C.; Liu, Y.; Xu, Y.; Kang, L.; Zhang, X.; Sun, J.; Ma, Z.; Zhao, K.; Huang, Y.; et al. Modulating the Hydrogen Bond for a Stable Zinc Anode with a Wide Temperature Range via the Sucrose and Polyacrylamide Synergistic Effect. ACS Nano 2025, 19, 11146–11163. [Google Scholar] [CrossRef] [PubMed]
- Qiang, S.; Wu, F.; Liu, H.; Zeng, S.; Liu, S.; Dai, J.; Zhang, X.; Yu, J.; Liu, Y.-T.; Ding, B. Integration of high strength, flexibility, and room-temperature plasticity in ceramic nanofibers. Nat. Commun. 2025, 16, 3265. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Wen, X.; Yang, Z.; Wang, Z.; Feng, Z.; Bai, H.; Xue, Q.; Miao, Y.; Tian, T.; et al. Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy. Nat. Nanotechnol. 2025, 20, 563–574. [Google Scholar] [CrossRef]
- Colin, M.; Petit, E.; Guérin, K.; Dubois, M. High Energy Density of Ball-Milled Fluorinated Carbon Nanofibers as Cathode in Primary Lithium Batteries. Nanomaterials 2024, 14, 404. [Google Scholar] [CrossRef]
- Won, M.; Jung, M.; Kim, J.; Kim, D.S. Fully Printed Cellulose Nanofiber–Ag Nanoparticle Composite for High-Performance Humidity Sensor. Nanomaterials 2024, 14, 343. [Google Scholar]
- Xiong, J.; Cao, Y.; Zhao, H.; Chen, J.; Cai, X.; Li, X.; Liu, Y.; Xiao, H.; Ge, J. Cooperative Antibacterial Enzyme-Ag-Polymer Nanocomposites. ACS Nano 2022, 16, 19013–19024. [Google Scholar]
- Park, H.M.; Misra, M.; Drzal, L.T.; Mohanty, A.K. “Green” nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 2004, 5, 228. [Google Scholar] [CrossRef]
- Ma, Z.; He, J.; Liu, S.; Qie, X.; Gan, M.; Cheng, R.; Wu, Q.; Xing, M. Gradient layered MXene/Fe3O4@CNTs/TOCNF ultrathin nanocomposite paper exhibiting effective electromagnetic shielding and multifunctionality. Nano Res. 2024, 17, 8233–8242. [Google Scholar]
- Li, Z.; Huang, Y.; Zhang, J.; Jin, S.; Zhang, S.; Zhou, H. One-step synthesis of MnOx/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism. Nanoscale 2020, 12, 4150–4158. [Google Scholar] [PubMed]
- Hasan, K.F.; Bai, S.; Chen, S.; Lin, K.; Ahmed, T.; Chen, J.; Pan, A.; Zhu, Y.; Lin, C.S.K.; Tso, C.Y. Nanotechnology-empowered radiative cooling and warming textiles. Cell Rep. Phys. Sci. 2024, 5, 102108. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, H.; Jiang, C.; Wu, S.; Ye, L.; Zhao, D.; Zhou, Z. Micro-Nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 2022, 32, 2206962. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y. Emerging materials and strategies for passive daytime radiative cooling. Small 2023, 19, e2206145. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Li, S.; Valenzuela, C.; Shi, S.; Jiang, C.; Wu, S.; Ye, L.; Wang, L.; Zhou, Z. Emerging materials and engineering strategies for performance advance of radiative sky cooling technology. Chem. Eng. J. 2023, 453, 139739. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.-C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301. [Google Scholar] [CrossRef]
- Galusha, J.W.; Jorgensen, M.R.; Bartl, M.H. Diamond-structured titania photonic-bandgap crystals from biological templates. Adv. Mater. 2010, 22, 107–110. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Yang, Z.; Zhou, H.; Zhao, Q.; Fan, T. Bright silver brilliancy from irregular microstructures in butterfly Curetis acuta Moore. Adv. Opt. Mater. 2019, 7, 201900687. [Google Scholar] [CrossRef]
- Cheng, Z.; Han, H.; Wang, F.; Yan, Y.; Shi, X.; Liang, H.; Zhang, X.; Shuai, Y. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 2021, 89, 106377. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Childers, R.A.; Shi, N.N.; Ren, C.; Pelaez, J.N.; Bernard, G.D.; Pierce, N.E. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 2020, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Zhang, H.; Ly, K.C.S.; Liu, X.; Chen, Z.; Yan, M.; Wu, Z.; Wang, X.; Zheng, Y.; Zhou, H.; Fan, T. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 14657–14666. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, J.; Zhao, J.; Li, X.; Liu, L. Complex refractive indices measurements of polymers in infrared bands. J. Quant. Spectrosc. Radiat. Transf. 2020, 252, 107063. [Google Scholar] [CrossRef]
- Zhu, W.; Benjamin, D.; Shen, Q.; Zhang, Y.; Thomas, G.P.; Shan, X.; Richard, M.P.; Michael, F.L.; De, V.; Tao, D.; et al. Structurally Colored Radiative Cooling Cellulosic Films. Adv. Sci. 2022, 9, 2202061. [Google Scholar] [CrossRef]
- Hossain, M.M.; Jia, B.; Gu, M.A. Metamaterial Emitter for Highly Efficient Radiative Cooling. Adv. Opt. Mater. 2015, 3, 1047–1051. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, T.; Meng, Y.; Yang, R.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, T.; Xie, H.; Liu, H.; Wang, L.; Qu, Y.; Li, S.C.; Brozena, A.H.; Yu, Z.; Srebric, J.; et al. A solution-processed radiative cooling glass. Science 2023, 382, 684–691. [Google Scholar] [CrossRef]
- An, S.; Shi, B.; Jiang, M.; Fu, B.; Song, C.; Tao, P.; Shang, W.; Deng, T. Biological and bioinspired thermal energy regulation and utilization. Chem. Rev. 2023, 123, 7081–7118. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754. [Google Scholar] [CrossRef] [PubMed]
- Dumanli, A.G.; Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 2016, 45, 6698–6724. [Google Scholar] [CrossRef] [PubMed]
- Tadepalli, S.; Slocik, J.M.; Gupta, M.K.; Naik, R.R.; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 2017, 117, 12705–12763. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Yang, M.; Guo, X.-J.; Xue, C.-H.; Wang, H.-D.; Ma, C.-Q.; Bai, Z.; Zhou, X.; Wang, Z.; Liu, B.-Y.; et al. Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 2023, 137, 101144. [Google Scholar] [CrossRef]
- So, S.; Yun, J.; Ko, B.; Lee, D.; Kim, M.; Noh, J.; Park, C.; Park, J.; Rho, J. Radiative cooling for energy sustainability: From fundamentals to fabrication methods toward commercialization. Adv. Sci. 2023, 11, e2305067. [Google Scholar] [CrossRef]
- Wu, S.; Cao, Y.; Li, Y.; Sun, W. Recent advances in material engineering and applications for passive daytime radiative cooling. Adv. Opt. Mater. 2022, 11, 202202163. [Google Scholar] [CrossRef]
- Farooq, A.S.; Zhang, P.; Gao, Y.; Gulfam, R. Emerging radiative materials and prospective applications of radiative sky cooling—A review. Renew. Sustain. Energy Rev. 2021, 144, 110910. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.-C.; Carter, M.J.; Mandal, J.; Overvig, A.C.; Sfeir, M.Y.; Lu, M.; Craig, C.L.; Bernard, G.D.; Yang, Y.; et al. Nanostructured fibers as a versatile photonic platform: Radiative cooling and waveguiding through transverse Anderson localization. Light. Sci. Appl. 2018, 7, 37. [Google Scholar] [CrossRef]
- Yuanshan, L. Investigation on thermal effect of daytime insolation and night radiative cooling of building materials. Mater. Rev. 2009, 23, 131817049. [Google Scholar]
- Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G. The radiative cooling of selective surfaces. Sol. Energy 1975, 17, 83–89. [Google Scholar] [CrossRef]
- Kambezidis, H.D. 3.02—The solar resource. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Oxford, UK, 2012; pp. 27–84. [Google Scholar]
- Zhai, H.; Fan, D.; Li, Q. Dynamic radiation regulations for thermal comfort. Nano Energy 2022, 100, 107435. [Google Scholar] [CrossRef]
- Yu, X.; Chan, J.; Chen, C. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 2021, 88, 106259. [Google Scholar] [CrossRef]
- Li, J.; Liang, W.; Li, J.; Li, H.; Lai, Y.; Oren, S. Super-Large-Scale Hierarchically Porous Films Based on Self-Assembled Eye-Like Air Pores for High-Performance Daytime Radiative Cooling. Small 2022, 18, 2200791. [Google Scholar]
- Chen, Z.; Zhu, L.; Raman, A.; Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 2016, 7, 13729. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Song, H.; Liang, J.; Singer, M.; Zhou, M.; Stegenburgs, E.; Zhang, N.; Xu, C.; Ng, T.; Yu, Z.; et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2019, 2, 718–724. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, J.; Liu, J.; Zhou, Z.; Sui, J.; Xing, J.; Zuo, J. Cover shields for sub-ambient radiative cooling: A literature review. Renew. Sustain. Energy Rev. 2021, 143, 110959. [Google Scholar] [CrossRef]
- Zhou, L.; Song, H.; Zhang, N.; Rada, J.; Singer, M.; Zhang, H.; Ooi, B.S.; Yu, Z.; Gan, Q. Hybrid concentrated radiative cooling and solar heating in a single system. Cell Rep. Phys. Sci. 2021, 2, 100338. [Google Scholar] [CrossRef]
- Jeong, S.; Tso, C.; Wong, Y.; Chao, C.; Huang, B. Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 2020, 206, 110296. [Google Scholar] [CrossRef]
- Yue, X.; He, M.; Zhang, T.; Yang, D.; Qiu, F. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl. Mater. Interfaces 2020, 12, 12285–12293. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-Y.; Xue, C.-H.; Zhong, H.-M.; Guo, X.-J.; Wang, H.-D.; Li, H.-G.; Du, M.-M.; Huang, M.-C.; Wei, R.-X.; Song, L.-G.; et al. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 2021, 9, 24276–24282. [Google Scholar] [CrossRef]
- Zhao, B.; Yue, X.; Tian, Q.; Qiu, F.; Li, Y.; Zhang, T. Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 2022, 29, 7775–7787. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Hou, Y.; Pan, Y.; Liu, C.; Shen, C. Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv. Funct. Mater. 2022, 32, 202207414. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, Y.; Liu, C.; Zhang, T.; Bu, X.; Huang, Y.; He, M. Skeleton-inspired optical-selective cellulose-based bio-film as passive radiative cooler and the energy-saving performance evaluation. Chem. Eng. J. 2023, 452, 139377. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, Y.; Chen, X.; Shi, S.; Liu, C.; Zhang, T. Bio-skin inspired 3D porous cellulose/AlPO4 nano-laminated film with structure-enhanced selective emission for all-day non-power cooling. J. Mater. Chem. A 2021, 9, 25178–25188. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, C.; Wang, P.; Yan, M.; Wang, H.; Xie, P.; Liu, G.; Zhou, H.; Zhang, D.; Fan, T. Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 2021, 9, 2101151. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, H.; Xi, Y.; Qi, Y.; Mao, Z.; Wang, P.; Zhang, J. Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2021, 227, 111101. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 2021, 13, 43387–43395. [Google Scholar] [CrossRef]
- Tian, Q.; Tu, X.; Yang, L.; Liu, H.; Zhou, Y.; Xing, Y.; Chen, Z.; Fan, S.; Evans, J.; He, S. Super-large-scale hierarchically porous films based on self-assembled eye-like air pores for high-performance daytime radiative cooling. Small 2022, 18, 2205091. [Google Scholar] [CrossRef]
- Wehner, R.; Wehner, S. Parallel evolution of thermophilia: Daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol. Entomol. 2011, 36, 271–281. [Google Scholar] [CrossRef]
- Lou, C.; An, S.; Yang, R.; Zhu, H.; Shen, Q.; Jiang, M.; Fu, B.; Tao, P.; Song, C.; Deng, T.; et al. Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly Rapala dioetas. APL Photon. 2021, 6, 036101. [Google Scholar] [CrossRef]
- Cai, C.; Chen, W.; Wei, Z.; Ding, C.; Sun, B.; Gerhard, C.; Fu, Y.; Zhang, K. Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy 2023, 114, 108625. [Google Scholar] [CrossRef]
- Gur, D.; Leshem, B.; Oron, D.; Weiner, S.; Addadi, L. The structural basis for enhanced silver reflectance in koi fish scale and skin. J. Am. Chem. Soc. 2014, 136, 17236–17242. [Google Scholar] [CrossRef]
- Funt, N.; Palmer, B.A.; Weiner, S.; Addadi, L. Koi Fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 2017, 82, 914–923. [Google Scholar] [CrossRef]
- Rephaeli, E.; Raman, A.; Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013, 13, 1457–1461. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Ha, J.; Wong, Y.M.; Chao, C.Y.; Huang, B.; Qiu, H. Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renew. Energy 2020, 146, 44–55. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Yao, K.; Ma, H.; Huang, M.; Zhao, H.; Zhao, J.; Li, Y.; Dou, S.; Zhan, Y. Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling. ACS Appl. Nano Mater. 2019, 2, 5512–5519. [Google Scholar] [CrossRef]
- Gao, W.; Lei, Z.; Wu, K.; Chen, Y. Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 2021, 31, 2100535. [Google Scholar] [CrossRef]
- Wilts, B.D.; Sheng, X.; Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Raabe, J.; Hoppe, R.; Liu, S.; Langford, R.; Onelli, O.D.; et al. Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. 2017, 30, e1702057. [Google Scholar] [CrossRef]
- Burresi, M.; Cortese, L.; Pattelli, L.; Kolle, M.; Vukusic, P.; Wiersma, D.S.; Steiner, U.; Vignolini, S. Bright-white beetle scales optimise multiple scattering of light. Sci. Rep. 2014, 4, 6075. [Google Scholar] [CrossRef] [PubMed]
- Cortese, L.; Pattelli, L.; Utel, F.; Vignolini, S.; Burresi, M.; Wiersma, D.S. Anisotropic light transport in white beetle scales. Adv. Opt. Mater. 2015, 3, 1337–1341. [Google Scholar] [CrossRef]
- He, J.; Zhang, Q.; Zhou, Y.; Chen, Y.; Ge, H.; Tang, S. Bioinspired polymer films with surface ordered pyramid arrays and 3d hierarchical pores for enhanced passive radiative cooling. ACS Nano 2024, 18, 11120–11129. [Google Scholar] [CrossRef]
- Vigneron, J.P.; Rassart, M.; Vértesy, Z.; Kertész, K.; Sarrazin, M.; Biró, L.P.; Ertz, D.; Lousse, V. Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys. Rev. 2005, 71, 011906. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Li, M.; Hu, J.; Cheng, Q.; Jiang, L.; Song, Y. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective ‘‘cool roof’’. Energy Environ. Sci. 2011, 4, 3364. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J.; Liang, G.; Ding, X.; Tang, Y.; Li, Z. White hairy layer on the Boehmeria nivea leaf—Inspiration for reflective coatings. Bioinspir. Biomim. 2020, 15, 016003. [Google Scholar] [CrossRef]
- Lauster, T.; Mauel, A.; Herrmann, K.; Veitengruber, V.; Song, Q.; Senker, J.; Retsch, M. From chitosan to chitin: Bio-inspired thin films for passive daytime radiative cooling. Adv. Sci. 2023, 10, 202206616. [Google Scholar] [CrossRef]
- Sun, H.; Tang, F.; Chen, Q.; Xia, L.; Guo, C.; Liu, H.; Zhao, X.; Zhao, D.; Huang, L.; Li, J.; et al. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 2023, 455, 139786. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, J.; Yuan, S.; Xu, T.; Zhang, X.; Xu, L.; Zuo, T.; Cai, Y.; Yi, L. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chem. Eng. J. 2023, 451, 138558. [Google Scholar] [CrossRef]
- Jaramillo-Fernandez, J.; Yang, H.; Schertel, L.; Whitworth, G.L.; Garcia, P.D.; Vignolini, S.; Sotomayor-Torres, C.M. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 2022, 9, 2104758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, W.; Shao, Z.; Li, Y.; Su, Y.; Zhang, Q.; Hou, C.; Wang, H. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022, 16, 2188–2197. [Google Scholar] [CrossRef]
- Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y.; Xu, N.; Wu, Z.; Li, J.; Li, X.; et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348. [Google Scholar] [CrossRef]
- He, J.; Zhang, Q.; Wu, Y.; Ju, Y.; Wang, Y.; Tang, S. Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 2023, 466, 143127. [Google Scholar] [CrossRef]
- Bu, K.; Huang, X.; Li, X.; Bao, H. Consistent Assessment of the cooling performance of radiative cooling materials. Adv. Funct. Mater. 2023, 33, 202307191. [Google Scholar] [CrossRef]
- Zhou, L.; Yin, X.; Gan, Q. Best practices for radiative cooling. Nat. Sustain. 2023, 6, 1030–1032. [Google Scholar] [CrossRef]
- Baniassadi, A.; Sailor, D.J.; Ban-Weiss, G.A. Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Clim. 2019, 29, 100495. [Google Scholar] [CrossRef]
- Chai, J.; Fan, J. Solar and thermal radiation-modulation materials for building applications. Adv. Energy Mater. 2023, 13, 202202932. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.; Yang, R.; Zhao, D. Materials, structures, and devices for dynamic radiative cooling. Cell Rep. Phys. Sci. 2022, 3, 101198. [Google Scholar] [CrossRef]
- Doucet, S.M.; Meadows, M.G. Iridescence: A functional perspective. J. R. Soc. Interface 2009, 6, S115–S132. [Google Scholar] [CrossRef] [PubMed]
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Stiubianu, G.T.; Gorodetsky, A.A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 2018, 359, 1495–1500. [Google Scholar] [CrossRef]
- Williams, T.L.; Senft, S.L.; Yeo, J.; Martín-Martínez, F.J.; Kuzirian, A.M.; Martin, C.A.; DiBona, C.W.; Chen, C.-T.; Dinneen, S.R.; Nguyen, H.T.; et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 2019, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Gao, Y.; Guo, C.; Cao, F.; Song, Z.; Xi, Y.; Yu, A.; Li, A.; Zhai, G. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J. Nanopart. Res. 2010, 12, 3111–3122. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S.H. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. Nano-Micro Lett. 2023, 15, 562–603. [Google Scholar] [CrossRef]
- Choe, A.; Yeom, J.; Kwon, Y.; Lee, Y.; Shin, Y.E.; Kim, J.; Ko, H. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 2020, 7, 3258–3265. [Google Scholar] [CrossRef]
- Wang, W.H.; Zhang, Q.; Cai, J.; Li, Y.; Wang, S.; Gong, X.L. Bio-inspired semi-active safeguarding design with enhanced impact resistance via shape memory effect. Adv. Funct. Mater. 2023, 33, 2215157. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Xu, Y. Rapid large-capacity storage of renewable solarVelectro-thermal energy within phase-change materials by bioinspired multifunctional meshes. Matter 2023, 6, 4050–4065. [Google Scholar] [CrossRef]
- Lin, X.; Qiu, C.; Wang, K.; Zhang, Y.; Wan, C.; Fan, M.; Wu, Y.; Sun, W.; Guo, X. Biomimetic bone tissue structure: An ultrastrong thermal energy storage wood. Chem. Eng. J. 2023, 457, 141351. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, L.; Jiang, S. Advances in photothermal regulation strategies:from efficient solar heating to daytime passive cooling. Chem. Soc. Rev. 2023, 52, 7389–7460. [Google Scholar] [CrossRef]
- Dong, Y.; Meng, W.; Wang, F.; Han, H.; Liang, H.; Li, X.; Zou, Y.; Yang, C.; Xu, Z.; Yan, Y.; et al. “Warm in Winter and Cool in Summer”: Scalable Biochameleon Inspired Temperature-Adaptive Coating with Easy Preparation and Construction. Nano Lett. 2023, 23, 9034–9041. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, J.; Hong, J.; Zhang, C.; Wei, H.; Ying, W.; Sun, C.; Sun, L.; Mao, Y.; Gao, Y.; et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 2022, 609, 611–615. [Google Scholar] [CrossRef]
- Atamian, H.S.; Creux, N.M.; Brown, R.I.; Garner, A.G.; Blackman, B.K.; Harmer, S.L. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 2016, 353, 587–590. [Google Scholar] [CrossRef]
- Liu, X.; Gao, M.; Chen, J.; Guo, S.; Zhu, W.; Bai, L.; Zhai, W.; Du, H.; Wu, H.; Yan, C.; et al. Recent Advances in Stimuli-Responsive Shape-Morphing Hydrogels. Adv. Funct. Mater. 2022, 32, 2203323. [Google Scholar]
- Qian, X.; Zhao, Y.; Alsaid, Y.; Wang, X.; Hua, M.; Galy, T.; Gopalakrishna, H.; Yang, Y.; Cui, J.; Liu, N.; et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055. [Google Scholar] [CrossRef]
- Yang, M.; Xu, Y.; Zhang, X.; Bisoyi, H.K.; Xue, P.; Yang, Y.; Yang, X.; Valenzuela, C.; Chen, Y.; Wang, L.; et al. Bioinspired Phototropic MXene-Reinforced Soft Tubular Actuators for Omnidirectional Light-Tracking and Adaptive Photovoltaics. Adv. Funct. Mater. 2022, 32, 2201884. [Google Scholar]
- McCormick, E.L.; Cooper, E.A.; Esfandiar, M.; Roberts, M.; Shields, L. Process-Oriented Design Methodologies Inspired by Tropical Plants. Sustainability 2023, 15, 16119. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, M.; Xu, X.; Liu, X.; Liu, H.; Jiang, L.; Wang, S. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 2022, 21, 1357–1365. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, N.; Wang, Y.; Wu, J.; Gan, Q.; Li, W. Photopatternable Nanolayered Polymeric Films with Fast Tunable Color Responses Triggered by Humidity. Adv. Funct. Mater. 2019, 29, 1904453. [Google Scholar] [CrossRef]
- Chen, X.; Kong, L.; Mehrez, J.A.A.; Fan, C.; Quan, W.; Zhang, Y.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. Nano-Micro Lett. 2023, 15, 149. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Zhu, H.; Xin, J.H.; Zhang, Q.; Zhu, S. Reversible Water Transportation Diode: Temperature-Adaptive Smart Janus Textile for Moisture/Thermal Management. Adv. Funct. Mater. 2020, 30, 1907851. [Google Scholar] [CrossRef]
- Ge, Y.; Cao, R.; Ye, S.; Chen, Z.; Zhu, Z.; Tu, Y.; Ge, D.; Yang, X. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem. Commun. 2018, 54, 3126–3129. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, J.; Duan, J.; Yu, B.; Xie, W.; Qi, B.; Wang, H.; Zhuang, X.; Liu, S.; Liu, P.; et al. High-efficiency solar heat storage enabled by adaptive radiation management. Cell Rep. Phys. Sci. 2021, 2, 100533. [Google Scholar] [CrossRef]
- Ni, F.; Qiu, N.; Xiao, P.; Zhang, C.; Jian, Y.; Liang, Y.; Xie, W.; Yan, L.; Chen, T. Tillandsia-inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting. Angew. Chem. 2020, 132, 19399–19408. [Google Scholar] [CrossRef]
- Lu, Z.; Strobach, E.; Chen, N.; Ferralis, N.; Grossman, J.C. Passive Sub-Ambient Cooling from a Transparent Evaporation-Insulation Bilayer. Joule 2020, 4, 2693–2701. [Google Scholar] [CrossRef]
- Huang, G.; Xu, J.; Markides, C.N. High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf. Nat. Commun. 2023, 14, 3344. [Google Scholar] [CrossRef]
- Hu, D.; Ma, W.; Zhang, Z.; Ding, Y.; Wu, L. Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films. ACS Appl. Mater. Interfaces 2020, 12, 11115–11125. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; He, Q.; Li, X.; Lu, G.; Jiang, L.; Zeng, Y.; Bethers, B.; Jin, J.; Lin, S.; et al. 3D printing of nacre-inspired structures with exceptional mechanical and flame-retardant properties. Research 2022, 2022, 9840574. [Google Scholar] [CrossRef]
- Cui, S.; Odukomaiya, A.; Vidal, J. Materials research and development needs to enable efficient and electrified buildings. MRS Bull. 2021, 46, 1176–1186. [Google Scholar] [CrossRef]
- Hu, T.; Kwan, T.H.; Pei, G. An all-day cooling system that combines solar absorption chiller and radiative cooling. Renew. Energy 2022, 186, 831–844. [Google Scholar] [CrossRef]
- Paranjothi, G.; Odukomaiya, A.; Cui, S.; Bulk, A. Evaluation of phase change plaster/paste composites for building envelopes. Energy Build. 2021, 253, 111372. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 115–128. [Google Scholar] [CrossRef]
- Algarni, S. Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia. Energy Environ. 2018, 30, 235–253. [Google Scholar] [CrossRef]
- Liu, S.; Sui, C.; Harbinson, M.; Pudlo, M.; Perera, H.; Zhang, Z.; Liu, R.; Ku, Z.; Islam, D.; Liu, Y.; et al. A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett. 2023, 23, 7767–7774. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Zhang, Z.; Cai, Y.; Sun, Z.; Zhang, H.; Li, Y.; Liu, L.; Zhang, W.; Xue, X.; et al. Sub-ambient cooling effect and net energy efficiency of a super-amphiphobic self-cleaning passive sub-ambient daytime radiative cooling coating applied to various buildings. Energy Build. 2022, 284, 112702. [Google Scholar] [CrossRef]
- Jeon, S.K.; Kim, J.T.; Kim, M.S.; Kim, I.S.; Park, S.J.; Jeong, H.; Lee, G.J.; Kim, Y.J. Scalable, patternable glass-infiltrated ceramic radiative coolers for energy-saving architectural applications. Adv. Sci. 2023, 10, e2302701. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Liang, J.; Wu, J.; Yang, M.; Pan, Y.; Hou, C.; Liu, C.; Shen, C.; Tao, G.; et al. Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 2023, 10, 5060–5070. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Wu, J.; Xue, C.H.; Zeng, Y.; Liang, J.; Zhang, S.; Liu, M.; Ma, C.-Q.; Wang, Z.; Tao, G. Bioinspired Superhydrophobic All-in-one Coating for Adaptive Thermoregulation. Adv. Mater. 2024, 36, e2400745. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Zhao, J.; Zeng, J.; Bu, T.; Li, J.; Dai, Y.; Dong, Z.; Feng, Y.; Chen, Y.; Zhang, C. Self-powered VO2 phase transition based on triboelectric nanogenerator. J. Mater. Chem. A 2024, 12, 19052–19059. [Google Scholar] [CrossRef]
- Sheng, S.Z.; Wang, J.L.; Zhao, B.; He, Z.; Feng, X.F.; Shang, Q.G.; Chen, C.; Pei, G.; Zhou, J.; Liu, J.-W.; et al. Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 2023, 14, 3231. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Wang, F.; Yuan, W.; Cheng, Z.; Liang, H.; Yan, Y. Low-Cost and Large-Scale Producible Biomimetic Radiative Cooling Glass with Multiband Radiative Regulation Performance. Adv. Opt. Mater. 2022, 10, 202202031. [Google Scholar] [CrossRef]
- Chen, Y.; Dang, B.; Fu, J.; Wang, C.; Li, C.; Sun, Q.; Li, H. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 2020, 21, 397–404. [Google Scholar] [CrossRef]
- Sun, Y.; He, H.; Huang, X.; Guo, Z. Superhydrophobic SiO2–glass bubbles composite coating for stable and highly efficient daytime radiative cooling. ACS Appl. Mater. Interfaces 2023, 15, 4799–4813. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, W.; Sun, Z.; Pan, M.; Tian, F.; Li, X.; Ye, M.; Deng, X. Durable radiative cooling against environmental aging. Nat. Commun. 2022, 13, 4805. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, B.; Sui, C.; Nandi, A.; Fang, H.; Peng, Y.; Tan, G.; Hsu, P.-C. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 2020, 11, 6101. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Qiu, M.; Li, Y.; Zhang, Q.M.; Li, S.; Yang, Z.; Feng, C.; Zhang, W.; Dai, J.; Lei, D.; et al. Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 2020, 32, e1906751. [Google Scholar] [CrossRef]
- Lee, G.J.; Kim, Y.J.; Kim, H.M.; Yoo, Y.J.; Song, Y.M. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 2018, 6, 201800707. [Google Scholar] [CrossRef]
- Son, S.; Jeon, S.; Chae, D.; Lee, S.Y.; Liu, Y.; Lim, H.; Oh, S.J.; Lee, H. Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 2021, 79, 105461. [Google Scholar] [CrossRef]
- Carlosena, L.; Andueza, Á.; Torres, L.; Irulegi, O.; Hernández-Minguillón, R.J.; Sevilla, J.; Santamouris, M. Experimental development and testing of low-cost scalable radiative cooling materials for building applications. Sol. Energy Mater. Sol. Cells 2021, 230, 111209. [Google Scholar] [CrossRef]
- Dong, Y.; Han, H.; Wang, F.; Zhang, Y.; Cheng, Z.; Shi, X.; Yan, Y. A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method. Renew. Energy 2022, 192, 606–616. [Google Scholar] [CrossRef]
- Xuan, Q.; Zhao, B.; Wang, C.; Li, L.; Lu, K.; Zhai, R.; Liu, X.; Jiang, B.; Pei, G. Development, testing, and evaluation of the daylighting, thermal, and energy-saving performance of semitransparent radiative cooling glass in cooling-dominated regions. Energy Convers. Manag. 2022, 273, 116443. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Shin, S.; Huang, S.; Ren, X.; Shu, W.; Cheng, J.; Tao, G.; Xu, W.; Chen, R.; et al. Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 2020, 10, 201903921. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef]
- Pakdel, E.; Wang, X. Thermoregulating textiles and fibrous materials for passive radiative cooling functionality. Mater. Des. 2023, 231, 112006. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Tong, J.K.; Huang, X.; Boriskina, S.V.; Loomis, J.; Xu, Y.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon. 2015, 2, 769–778. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, J.; Song, A.Y.; Catrysse, P.B.; Hsu, P.-C.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D.S.; et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Jiang, Q.; Zhang, W.; Wang, B.; Li, R.; Zhao, S.; Wang, F.; Huang, Y.; Lyu, P.; et al. An all-weather radiative human body cooling textile. Nat. Sustain. 2023, 6, 1446–1454. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Liang, X.; Zhang, Y.; Bi, P.; Zhang, M.; Li, S.; Liang, H.; Wang, S.; Wang, H.; et al. Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 2023, 34, 202313539. [Google Scholar] [CrossRef]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M.; et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yang, D.; Yu, Z. Dual-functional reduced graphene oxide decorated nanoporous polytetrafluoroethylene metafabrics for adaptive personal thermal management. Nano Energy 2023, 118, 108965. [Google Scholar]
- Chen, B.; Song, J.; Dai, X.; Liu, Y.; Rudd, P.N.; Hong, X.; Huang, J. Synergistic effect of elevated device temperature and excess charge carriers on the rapid light-induced degradation of perovskite solar cells. Adv. Mater. 2019, 31, e1902413. [Google Scholar] [CrossRef]
- Pu, S.; Liao, Y.; Chen, K.; Fu, J.; Zhang, S.; Ge, L.; Conta, G.; Bouzarif, S.; Cheng, T.; Hu, X.; et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 2020, 20, 3791–3797. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Chen, Y.; Hwang, C.; Chang, S.; Tsai, M.; Jayakumaran, K.N.; Yang, L.; Lo, Y.; Ko, F.; Wang, H.; Chen, H.; et al. Eco-friendly transparent silk fibroin radiative cooling film for thermal management of optoelectronics. Adv. Funct. Mater. 2023, 33, 202301924. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Zhou, J.; Yao, K.; Ma, X.; Gao, S.; Wang, Z.; Dai, J.-G.; Lei, D.; Yu, X. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 2023, 9, eadg1837. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Kim, M.; Jeong, S.; Hong, S.; Ko, S.H. Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 2024, 18, 2312–2324. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, C.; Wang, X.; Zhu, B.; Li, W.; Xiao, X.; Fu, H.; Hu, S.; Zhu, S.; Xu, W.; et al. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat. Chem. Eng. 2024, 1, 301–310. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Chen, H.; Liao, J.; Lu, Y.; Lan, D.; Wang, C. Design and experimental study of a compact thermoelectric device driven by solar heating and radiative cooling. Next Energy 2024, 4, 100146. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Zhang, X.; Wu, Z.; Hu, Z. Sustainable thermal energy harvest for generating electricity. Innovation 2024, 5, 100591. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, L.; Li, W.; Fan, S. Simultaneously and synergistically harvest energy from the sun and outer space. Joule 2019, 3, 101–110. [Google Scholar] [CrossRef]
- Raman, A.P.; Li, W.; Fan, S. Generating light from darkness. Joule 2019, 3, 2679–2686. [Google Scholar] [CrossRef]
- Han, W.B.; Heo, S.-Y.; Kim, D.; Yang, S.M.; Ko, G.-J.; Lee, G.J.; Kim, D.-J.; Rajaram, K.; Lee, J.H.; Shin, J.-W.; et al. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 2023, 9, eadf5883. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhao, D.; Aili, A.; Zhang, S.; Shi, C.; Zhang, J.; Geng, H.; Zhang, J.; Zhang, L.; et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-W.; Guo, Y.-M.; He, M.-J.; Ren, Y.-T.; Gao, B.-H.; Qi, H. Self-adaptive photothermal/radiative cooling-thermoelectric conversion system for 24 h electricity generation. Appl. Therm. Eng. 2024, 243, 122603. [Google Scholar] [CrossRef]
- Raman, A.P. Thermal light tunnels its way into electricity. Science 2020, 367, 1301–1302. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; You, T.; Wu, W. Passive atmospheric water harvesting: Materials, devices, and perspectives. Nano Energy 2024, 125, 109572. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef]
- Zhou, M.; Song, H.; Xu, X.; Shahsafi, A.; Qu, Y.; Xia, Z.; Ma, Z.; Kats, M.A.; Zhu, J.; Ooi, B.S.; et al. Vapor condensation with daytime radiative cooling. Proc. Natl. Acad. Sci. USA 2021, 118, e2019292118. [Google Scholar] [CrossRef]
- Haechler, I.; Park, H.; Schnoering, G.; Gulich, T.; Rohner, M.; Tripathy, A.; Milionis, A.; Schutzius, T.M.; Poulikakos, D. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 2021, 7, eabf3978. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Fu, B.; Song, C.; Shang, W.; Tao, P.; Deng, T. All-day freshwater harvesting through combined solar-driven interfacial desalination and passive radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 47612–47622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Zhong, H.; Zhang, B.; Cui, M.; Jiang, M.; Wang, S.; Wang, Z. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 2022, 3, 100879. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, Z.; Shi, Y.; Zhao, X.; Fan, S.; Chen, Z. Fundamental limits of the dew-harvesting technology. Nanoscale Microscale Thermophys. Eng. 2020, 24, 43–52. [Google Scholar] [CrossRef]
- Xi, Z.; Li, S.; Yu, L.; Yan, H.; Chen, M. All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 2022, 14, 26255–26263. [Google Scholar] [CrossRef]
- Li, W.; Dong, M.; Fan, L.; John, J.J.; Chen, Z.; Fan, S. Nighttime radiative cooling for water harvesting from solar panels. ACS Photon. 2021, 8, 269–275. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Luo, Y.; Zhang, S.; Xu, L.; Min, H.; Tang, S.; Meng, X. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 2021, 81, 105600. [Google Scholar]
- Lee, J.; Im, D.; Sung, S.; Yu, J.; Kim, H.; Lee, J.; Yoo, Y. Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 2024, 254, 123810. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Park, S.; Lee, J.; Kim, Y.S.; Yoo, Y. Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 2023, 459, 141652. [Google Scholar] [CrossRef]
- Choi, M.; Yu, J.; Kim, H.; Choi, B.I.; Cha, B.; Bang, Y.K.; Kim, Y.S.; Lee, W.; Yoo, Y. Green water-based cooling coating engineered for durability and LCA-verified emission cuts. J. Build. Eng. 2025, 111, 113382. [Google Scholar]
Material | Advantage | Disadvantage | Reference |
---|---|---|---|
Silicon | Good durability and stability | Sacrifice visible light transmittance | [29,30] |
ZnS | Excellent chemical inertness | No reflective properties | [31,32,33] |
polyphony oxide | Maintain humidity | Hard to process and mold. | [34] |
Silicon Oxynitride | Modify chemical composition | Limited thermal stability | [35,36] |
CdS | High IR band transmittance | Toxic | [37] |
Al paint | High mechanical strength | Complex to make | [38,39] |
Acrylic paint | Good adhesion | Less hard | [40,41] |
TiO2 paint | No pollution | Coarser texture | [14,42] |
Al2O3 paint | Prevent corrosion | Complex construction | [43,44] |
TiO2 composite coatings | High solar reflectance | Unstable in high temperatures | [45,46] |
Al2O3 composite coatings | Improves adhesion | Poor water resistance | [47] |
Nano SiO2 | High emissivity | Complex compounding process | [48,49] |
Nano Al2O3 | High mechanical properties | Complex purification process | [50,51,52] |
Nano Polyacrylate | Good adhesion to the substrate | Insufficient weather resistance | [53,54] |
Nanofibers | High surface area | Lack of durability | [55,56,57,58] |
Nanocomposites | High reflectivity and emissivity | Complex modification process | [55,59,60,61,62] |
Biological Inspiration | Material | Optical Properties | Cooling Performance |
---|---|---|---|
Saharan Silver Ant | PDMS film | ε~MIR~: 0.98 | High radiative power |
Neocerambyx gigas | Micro-pyramid array polymer | Rsolar~: ~95% ε~MIR~: >0.96 | ΔT: ~5.1 °C Pcool: ~90.8 W/m2 |
Cyphochilus Beetle | Porous polymer films with micropyramidal structure | Rsolar~: ~98% ε~MIR~: ~96% | High cooling power |
Cicada Wing | Porous polymer–ceramic composite micro-spike structure | Rsolar~: 97.6% ε~MIR~: 95.5% | ΔT: 6.6 °C Pcool: 78 W/m2 |
Poplar Leaf Trichomes | Hollow core–shell structure fiber membrane | Rvis~: 60–70% | Effective scattering and cooling |
Koi Fish Scale | Multilayer photonic crystals | Rolar~: >97% ε~ATW~: High | ΔT: 4.9 °C |
Wood | Delignin densifies wood | Rsolar~: 96% | Building Energy Saving: 20–35% |
Silk | Electrospun silk fibroin membrane | Rsolar~: 95% | ΔT: 3.5 °C |
Thermochromic Chameleon Skin | Temperature-adaptive radiative cooling coating | Summer: Rsolar::93%, ε~ATW~: 94% Winter: Rsolar: ~50% | Summer: ΔT: −6.5 K Winter: ΔT: +4.3 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, H.; Tian, X.; Hu, D.; Liu, Y.; Li, J.; Zhang, K.; Huang, H.; Yan, J.; Li, B. Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application. Materials 2025, 18, 4556. https://doi.org/10.3390/ma18194556
Wang J, Chen H, Tian X, Hu D, Liu Y, Li J, Zhang K, Huang H, Yan J, Li B. Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application. Materials. 2025; 18(19):4556. https://doi.org/10.3390/ma18194556
Chicago/Turabian StyleWang, Jiale, Haiyang Chen, Xiaxiao Tian, Dongxiao Hu, Yufan Liu, Jiayue Li, Ke Zhang, Hongliang Huang, Jie Yan, and Bin Li. 2025. "Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application" Materials 18, no. 19: 4556. https://doi.org/10.3390/ma18194556
APA StyleWang, J., Chen, H., Tian, X., Hu, D., Liu, Y., Li, J., Zhang, K., Huang, H., Yan, J., & Li, B. (2025). Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application. Materials, 18(19), 4556. https://doi.org/10.3390/ma18194556