Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
Abstract
1. Introduction
2. Materials and Methods
2.1. Composite Sample Preparation
- HAP: hydroxyapatite granules;
- FAP: fluorapatite granules;
- HAP/glucan: HAP-granules-based composites, containing β-1,3-glucan as a binder;
- FAP/glucan: FAP-granules-based composites, containing β-1,3-glucan as a binder.
2.2. Grinding and Sample Preparation for Imaging and Analyses
2.3. Chemical and Phase Composition Analysis
2.3.1. X-Ray Diffractometry (XRD)
2.3.2. Characterization by Raman Spectroscopy
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR) Measurements
2.3.4. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.4. Structural and Microarchitectural Analysis
2.4.1. Optical Microscopy
2.4.2. Electron Microscopy and Elemental Analysis
2.4.3. MicroCT-Based Analysis of Internal Microarchitecture
2.5. Surface and Porosity Characterization
2.5.1. Determination of Specific Surface Area and Micropore Distribution by Low-Temperature Nitrogen Adsorption
2.5.2. Surface Topographical Analysis Using 3D Optical Profilometer
3. Results and Discussion
3.1. Analysis of the Phase Composition
3.2. Raman Spectroscopy
3.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.4. Solid-State Nuclear Magnetic Resonance Spectroscopy (ssNMR)
3.5. Microscopic Imaging
3.6. Transmission Electron Microscopy (TEM) with Energy-Dispersive X-Ray Spectroscopy (EDS)
3.7. Internal Microarchitecture
3.8. Surface and Porosity
4. Conclusions
- FAP-based composites were denser and less porous, with significantly smaller agglomerates (~1 µm) and markedly lower specific surface area (0.50 m2/g) compared to HAP/glucan composites (~2 µm; 14.15 m2/g), contributing to enhanced mechanical stability.
- The F−/OH− ion exchange in FAP resulted in a contraction of the unit cell volume (524.6 Å3 vs. 528.2 Å3 for HAP), accompanied by characteristic spectral changes such as a shift in the OH stretching band (3573 → 3537 cm−1) and the appearance of a new band at 746 cm−1, which supports sustained fluoride release.
- HAP-based composites retained higher porosity (pore volume 0.03 cm3/g vs. 0.002 cm3/g) and larger particle sizes, favoring greater fluid uptake and potentially enhanced osteoconductive properties.
- Surface topographical analysis revealed that FAP/glucan composites exhibited sharper profile peaks (Rp 352 µm vs. 134 µm) despite similar average roughness values (Ra ~ 30 µm), suggesting tailored tissue–material interactions through modified surface features.
- Microstructural observations confirmed a homogeneous distribution of ceramic granules in both composites; however, FAP/glucan composites showed a less densely packed granule arrangement than HAP/glucan.
- Microscopic and elemental analyses indicated that FAP/glucan composite particles were smaller (~1 µm) but composed of larger individual crystals compared to HAP/glucan (~2 µm), with uniform distribution of major elements (C, O, Ca, P) and distinct fluorine localization.
- Spectroscopic techniques (Raman, FTIR, and NMR) further revealed distinct chemical signatures in FAP composites, including upfield shifts of phosphate bands, shifts in OH group vibrations, and changes in 31P NMR signals indicative of P–O bond shortening due to fluoride incorporation.
- Polymer–ceramic interfacial interactions differed between composites: glucan-specific bands (888 and 1157 cm−1) were sharper in HAP composites and broadened in FAP composites, which may suggest stronger binding interactions in the fluoride-substituted material.
- Despite attempts for complete fluoride substitution, residual hydroxyl groups persisted in FAP samples, particularly at crystal edges and surfaces, indicating incomplete F−/OH− exchange.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FAP | fluorapatite |
FAP/Glucan | fluorapatite/β-1,3-glucan composite material |
FTIR | Fourier transform infrared spectroscopy |
HAP | hydroxyapatite |
HAP/Glucan | hydroxyapatite/β-1,3-glucan composite material |
microCT | micro-computed tomography |
NMR | nuclear magnetic resonance |
PXRD | powder X-ray diffractometry |
TEM | transmission electron microscopy |
References
- Fluorapatite Market Size, Industry Outlook Report, Regional Analysis, Application Development Potential, Price Trends, Competitive Market Share & Forecast, 2024–2032. Report ID: GMI1440. 2023. Available online: https://www.gminsights.com/industry-analysis/fluorapatite-market (accessed on 18 August 2025).
- de Farias Soares, A.; Tatumi, S.H.; Courrol, L.C.; de Faria Barbosa, R.; Ramachandraiah, N.K. Studies on luminescence properties and photo-thermo transfer phenomena in fluorapatite. Radiat. Phys. Chem. 2022, 201, 110490. [Google Scholar] [CrossRef]
- Demir, B.; Karacaoglu, E.; Agil, A.A.; Koroglu, L.; Ayas, E. Effect of Gd-codoping on photoluminescence properties of Eu-doped natural fluorapatite. Optik 2023, 287, 171123. [Google Scholar] [CrossRef]
- Targońska, S.; Wiglusz, R.J. Concentration quenching mechanism of dysprosium (III) ions in silicate-substituted fluorapatite. Ceram. Int. 2023, 49, 41114–41122. [Google Scholar] [CrossRef]
- Polyakova, M.; Sokhova, I.; Doroshina, V.; Arakelyan, M.; Novozhilova, N.; Babina, K. The effect of toothpastes containing hydroxyapatite, fluoroapatite, and Zn-Mg-hydroxyapatite nanocrystals on dentin hypersensitivity: A randomized clinical trial. Int. Soc. Prev. Community Dent. 2022, 12, 252. [Google Scholar] [CrossRef]
- Azami, M.; Jalilifiroozinezhad, S.; Mozafari, M.; Rabiee, M. Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceram. Int. 2011, 37, 2007–2014. [Google Scholar] [CrossRef]
- Alhilou, A.; Do, T.; Mizban, L.; Clarkson, B.H.; Wood, D.J.; Katsikogianni, M.G. Physicochemical and antibacterial characterization of a novel fluorapatite coating. ACS Omega 2016, 1, 264–276. [Google Scholar] [CrossRef]
- Gineste, L.; Gineste, M.; Ranz, X.; Ellefterion, A.; Guilhem, A.; Rouquet, N.; Frayssinet, P. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J. Biomed. Mater. Res. 1999, 48, 224–234. [Google Scholar] [CrossRef]
- Wei, J.; Wang, J.; Shan, W.; Liu, X.; Ma, J.; Liu, C.; Wei, S. Development of fluorapatite cement for dental enamel defects repair. J. Mater. Sci. Mater. Med. 2011, 22, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Barandehfard, F.; Rad, M.K.; Hosseinnia, A.; Khoshroo, K.; Tahriri, M.; Jazayeri, H.E.; Moharamzadeh, K.; Tayebi, L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 2016, 42, 17866–17875. [Google Scholar] [CrossRef]
- Overgaard, S.Ø.R.; Søballe, K.J.; Lind, M.; Bünger, C. Resorption of hydroxyapatite and fluorapatite coatings in man: An experimental study in trabecular bone. J. Bone Joint Surg. Br. 1997, 79, 654–659. [Google Scholar] [CrossRef]
- Santiago, E.; Martin, V.; Colaço, B.; Fernandes, M.H.; Santos, C.; Gomes, P.S. Hydrothermal synthesis of fluorapatite coatings over titanium implants for enhanced osseointegration—An in vivo study in the rabbit. J. Funct. Biomater. 2022, 13, 241. [Google Scholar] [CrossRef]
- Rezvani, M.; Alahgholiyan, E.; Roshangar, L. Synthesis of a macroporous glass-ceramic scaffold containing fluorapatite crystalline phase for bone substitutes. Adv. Ceram. Prog. 2020, 6, 47–54. [Google Scholar]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of scaffolds for bone-tissue regeneration. Materials 2019, 12, 568. [Google Scholar] [CrossRef]
- Kattimani, V.S.; Kondaka, S.; Lingamaneni, K.P. Hydroxyapatite–Past, present, and future in bone regeneration. Bone Tissue Regen. Insights 2016, 7, BTRI-S36138. [Google Scholar] [CrossRef]
- Tredwin, C.J.; Young, A.M.; Abou Neel, E.A.; Georgiou, G.; Knowles, J.C. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: Dissolution behaviour and biological properties after crystallisation. J. Mater. Sci. Mater. Med. 2014, 25, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Pajor, K.; Pajchel, L.; Kolmas, J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—A review. Materials 2019, 12, 2683. [Google Scholar] [CrossRef]
- Kazimierczak, P.; Wessely-Szponder, J.; Palka, K.; Barylyak, A.; Zinchenko, V.; Przekora, A. Hydroxyapatite or fluorapatite—Which bioceramic is better as a base for the production of bone scaffold?—A comprehensive comparative study. Int. J. Mol. Sci. 2023, 24, 5576. [Google Scholar] [CrossRef]
- Borkowski, L.; Przekora, A.; Belcarz, A.; Palka, K.; Jozefaciuk, G.; Lübek, T.; Jojczuk, M.; Nogalski, A.; Ginalska, G. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. Mater. Sci. Eng. C 2020, 116, 111211. [Google Scholar] [CrossRef]
- Pajchel, L.; Borkowski, L. Solid-State NMR and Raman spectroscopic investigation of fluoride-substituted apatites obtained in various thermal conditions. Materials 2021, 14, 6936. [Google Scholar] [CrossRef] [PubMed]
- Purushotham, T.; Thangavel, A.; Shanmugharaj, A.M.; Arumugam, P.; Raman, K. Thermal degradation process and kinetics of gelatin/HAP composites. ECS Trans. 2022, 107, 16507–16517. [Google Scholar] [CrossRef]
- Chakravarty, J.; Rabbi, M.F.; Chalivendra, V.; Ferreira, T.; Brigham, C.J. Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int. J. Biol. Macromol. 2020, 151, 1213–1223. [Google Scholar] [CrossRef]
- Banimohamad-Shotorbani, B.; Rahmani Del Bakhshayesh, A.; Mehdipour, A.; Jarolmasjed, S.; Shafaei, H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: A review. J. Med. Eng. Technol. 2021, 45, 511–531. [Google Scholar] [CrossRef]
- Przekora, A.; Ginalska, G. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomed. Mater. 2015, 10, 015009. [Google Scholar] [CrossRef]
- Wang, E.; Lee, S.H.; Lee, S.W. Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules 2011, 12, 672–680. [Google Scholar] [CrossRef]
- El-Habashy, S.E.; Eltaher, H.M.; Gaballah, A.; Zaki, E.I.; Mehanna, R.A.; El-Kamel, A.H. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Mater. Sci. Eng. C 2021, 119, 111599. [Google Scholar] [CrossRef]
- Borkowski, L.; Pawlowska, M.; Radzki, R.P.; Bienko, M.; Polkowska, I.; Belcarz, A.; Karpiński, M.; Słowik, T.; Matuszewski, Ł.; Ślósarczyk, A.; et al. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits. Mater. Sci. Eng. C 2015, 53, 60–67. [Google Scholar] [CrossRef]
- Ignjatovic, N.; Uskokovic, D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl. Surf. Sci. 2004, 238, 314–319. [Google Scholar] [CrossRef]
- Sokolova, V.; Kostka, K.; Shalumon, K.T.; Prymak, O.; Chen, J.P.; Epple, M. Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. J. Mater. Sci. Mater. Med. 2020, 31, 102. [Google Scholar] [CrossRef] [PubMed]
- Jouyandeh, M.; Vahabi, H.; Rabiee, N.; Rabiee, M.; Bagherzadeh, M.; Saeb, M.R. Green composites in bone tissue engineering. Emergent Mater. 2022, 5, 603–620. [Google Scholar] [CrossRef]
- Borkowski, L.; Przekora, A.; Belcarz, A.; Palka, K.; Jojczuk, M.; Lukasiewicz, P.; Nogalski, A.; Ginalska, G. Highly porous fluorapatite/β-1,3-glucan composite for bone tissue regeneration: Characterization and in-vitro assessment of biomedical potential. Int. J. Mol. Sci. 2021, 22, 10414. [Google Scholar] [CrossRef] [PubMed]
- Dave, K.; Gomes, V.G. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Mater. Sci. Eng. C 2019, 105, 110078. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, L.; Belcarz, A.; Przekora, A.; Ginalska, G. Production Method for Biocompatible Implant Material. Polish Patent No. 235803, 6 October 2020. [Google Scholar]
- Borkowski, L.; Belcarz, A.; Przekora, A.; Ginalska, G. Method of Obtaining Bone Scaffold Based on Fluoroapatite Ceramics and Polymer and Bone Scaffold. Polish Patent No. 236369, 29 January 2021. [Google Scholar]
- Szurkowska, K.; Zgadzaj, A.; Kuras, M.; Kolmas, J. Novel hybrid material based on Mg2+ and SiO44− co-substituted nano-hydroxyapatite, alginate and chondroitin sulphate for potential use in biomaterials engineering. Ceram. Int. 2018, 44, 18551–18559. [Google Scholar] [CrossRef]
- Szatkowski, T.; Kołodziejczak-Radzimska, A.; Zdarta, J.; Szwarc-Rzepka, K.; Paukszta, D.; Wysokowski, M.; Ehrlich, H.; Jesionowski, T. Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochem. Probl. Miner. Process. 2015, 51, 575–585. [Google Scholar]
- Chen, J.; Yu, Z.; Zhu, P.; Wang, J.; Gan, Z.; Wei, J.; Zhao, Y.; Wei, S. Effects of fluorine on the structure of fluorohydroxyapatite: A study by XRD, solid-state NMR and Raman spectroscopy. J. Mater. Chem. B 2015, 3, 34–38. [Google Scholar] [CrossRef]
- Comodi, P.; Liu, Y.; Frezzotti, M. Structural and vibrational behaviour of fluorapatite with pressure. Part II: In situ micro-Raman spectroscopic investigation. Phys. Chem. Miner. 2001, 28, 225–231. [Google Scholar] [CrossRef]
- Penel, G.; Leroy, G.; Rey, C.; Sombret, B.; Huvenne, J.P.; Bres, E. Infrared and Raman microspectrometry study of fluoro-fluor-hydroxy and hydroxy-apatite powders. J. Mater. Sci. Mater. Med. 1997, 8, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Belcarz, A.; Ginalska, G.; Pycka, T.; Zima, A.; Ślósarczyk, A.; Polkowska, I.; Paszkiewicz, Z.; Piekarczyk, W. Application of β-1,3-glucan in production of ceramics-based elastic composite for bone repair. Cent. Eur. J. Biol. 2013, 8, 534–548. [Google Scholar] [CrossRef]
- Kolmas, J.; Kalinowski, E.; Wojtowicz, A.; Kolodziejski, W. Mid-infrared reflectance microspectroscopy of human molars: Chemical comparison of the dentin–enamel junction with the adjacent tissues. J. Mol. Struct. 2010, 966, 113–121. [Google Scholar] [CrossRef]
- Freund, F.; Knobel, R.M. Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy. J. Chem. Soc. Dalton Trans. 1977, 11, 1136–1140. [Google Scholar] [CrossRef]
- Wei, M.; Evans, T.; Bostrom, L.; Grøndahl, L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 2003, 14, 311–320. [Google Scholar] [CrossRef]
- Veiderma, M.; Knubovets, R.; Tonsuaadu, K. Structural properties of apatites from Finland studied by FTIR spectroscopy. Bull. Geol. Soc. Finl. 1998, 70, 69–75. [Google Scholar] [CrossRef]
- Knubovets, R. Structural mineralogy and properties of natural phosphates. Rev. Chem. Eng. 1993, 9, 161–216. [Google Scholar] [CrossRef]
- Jäger, C.; Welzel, T.; Meyer-Zaika, W.; Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 2006, 44, 573–580. [Google Scholar]
- Ren, C.; Yu, Z.; Phillips, B.L.; Wang, H.; Ji, J.; Pan, B.; Li, W. Molecular-scale investigation of fluoride sorption mechanism by nanosized hydroxyapatite using 19F solid-state NMR spectroscopy. J. Colloid Interface Sci. 2019, 557, 357–366. [Google Scholar] [CrossRef]
- Brouwer, D.; Mikolajewski, J. A combined solid-state NMR and quantum chemical calculation study of hydrogen bonding in two forms of α-d-glucose. Solid State Nucl. Magn. Reson. 2023, 123, 101848. [Google Scholar] [CrossRef]
- Stipanovic, A.J.; Giammatteo, P.J. Curdlan and scleroglucan: NMR characterization of solution and gel properties. In Polymers in Aqueous Media: Performance Through Association; Glass, J.E., Ed.; American Chemical Society: Boca Raton, FL, USA, 1989; pp. 173–187. [Google Scholar]
- Kremmyda, A.; MacNaughtan, W.; Arapoglou, D.; Eliopoulos, C.; Metafa, M.; Harding, S.E.; Israilides, C. The detection, purity and structural properties of partially soluble mushroom and cereal β-D-glucans: A solid-state NMR study. Carbohydr. Polym. 2021, 266, 118103. [Google Scholar] [CrossRef]
- Fleet, A.E.; Liu, X. Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am. Mineral. 2008, 93, 1460–1469. [Google Scholar] [CrossRef]
- Comodi, P.; Liu, Y.; Zanazzi, P.F.; Montagnoli, M. Structural and vibrational behaviour of fluorapatite with pressure. Part I: In situ single-crystal X-ray diffraction investigation. Phys. Chem. Miner. 2001, 28, 219–224. [Google Scholar] [CrossRef]
- Bhatnagar, V.M. Refinement of the synthetic hydroxyapatite cell parameters. Contrib. Mineral. Petrol. 1969, 22, 375–378. [Google Scholar] [CrossRef]
- Zaleski, R.; Gorgol, M.; Kierys, A.; Goworek, J. Positron porosimetry study of mesoporous polymer–silica composites. Adsorption 2016, 22, 745–754. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Bhatia, S.K. Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering. Carbon 2012, 50, 3045–3054. [Google Scholar] [CrossRef]
- Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato, H.; Hayashi, S.; Hara, M. Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 2009, 25, 5068–5075. [Google Scholar]
- Fletcher, A.J.; Uygur, Y.; Thomas, K.M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 2007, 111, 8349–8359. [Google Scholar] [CrossRef]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef]
- Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524. [Google Scholar] [CrossRef]
- Kakuta, A.; Tanaka, T.; Chazono, M.; Komaki, H.; Kitasato, S.; Inagaki, N.; Akiyama, S.; Marumo, K. Effects of micro-porosity and local BMP-2 administration on bioresorption of β-TCP and new bone formation. Biomater. Res. 2019, 23, 12. [Google Scholar] [CrossRef]
- Pan, L.; Shi, X.; Liu, S.; Guo, X.; Zhao, M.; Cai, R.; Sun, G. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway. Toxicol. Lett. 2014, 225, 34–42. [Google Scholar] [PubMed]
- Lee, M.; Arikawa, K.; Nagahama, F. Micromolar levels of sodium fluoride promote osteoblast differentiation through Runx2 signaling. Biol. Trace Elem. Res. 2017, 178, 283–291. [Google Scholar] [CrossRef]
- Li, Z.; Huang, B.; Mai, S.; Wu, X.; Zhang, H.; Qiao, W.; Luo, X.; Chen, Z. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells. Sci. Technol. Adv. Mater. 2015, 16, 035006. [Google Scholar] [CrossRef]
- Zhao, G.; Zinger, O.; Schwartz, Z.; Wieland, M.; Landolt, D.; Boyan, B.D. Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin. Oral Implant. Res. 2006, 17, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.W.; Oreffo, R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007, 6, 997–1003. [Google Scholar] [CrossRef]
- Anselme, K.; Bigerelle, M. Role of materials surface topography on mammalian cell response. Int. Mater. Rev. 2011, 56, 243–266. [Google Scholar] [CrossRef]
- Zhao, W.; Sui, B.; He, B.; Ding, J.; Li, J.; Peng, C.; Zhao, Y.; Gu, Z.; He, Y. The effect of surface roughness on the osteogenic differentiation of mesenchymal stem cells and the underlying mechanisms. Int. J. Nanomed. 2019, 14, 1231–1243. [Google Scholar]
- Alizadeh-Osgouei, M.; Li, Y.; Wen, C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact. Mater. 2019, 4, 22–36. [Google Scholar] [CrossRef]
- Dziadek, M.; Stodolak-Zych, E.; Cholewa-Kowalska, K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater. Sci. Eng. C 2017, 71, 1175–1191. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Hashmi, M.S.J. Polymer-ceramic composites: A state of art review and future applications. Adv. Mater. Process. Technol. 2022, 8, 895–908. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Wu, S.; Fan, Y.; Li, X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: Current progress and challenges. Biomater. Sci. 2020, 8, 2714–2733. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Papynov, E.K.; Shichalin, O.O.; Belov, A.A.; Buravlev, I.Y.; Mayorov, V.Y.; Fedorets, A.N.; Buravleva, A.A.; Lembikov, A.O.; Gritsuk, D.V.; Kapustina, O.V.; et al. CaSiO3-HAp metal-reinforced biocomposite ceramics for bone tissue engineering. J. Funct. Biomater. 2023, 14, 259. [Google Scholar] [CrossRef]
Sample | a (Å) | c (Å) | Cell Volume (Å3) | Crystallite Size Along c-Axis | Crystallite Size Along a-Axis |
---|---|---|---|---|---|
HAP | 9.415(2) | 6.881(1) | 528.2(1) | 30 ± 2 nm | 24 ± 2 nm |
FAP | 9.379(3) | 6.885(2) | 524.6(3) | 58 ± 4 nm | 49 ± 4 nm |
HAP/Glucan | 9.419(3) | 6.881(2) | 528.7(3) | 34 ± 2 nm | 31 ± 2 nm |
FAP/Glucan | 9.381(2) | 6.888(2) | 525.0(3) | 51 ± 3 nm | 47 ± 3 nm |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
HAP/Glucan | 104 ppm | 75 ppm | 88 ppm | 70 ppm | 78 ppm | 63 ppm |
FAP/Glucan | 103 ppm | 75 ppm | 88 ppm | 70 ppm | 78 ppm | 63 ppm |
Parameter | Sample | Statistically Significant Difference * | ||
---|---|---|---|---|
Units | HAP/Glucan Mean (±SD) | FAP/Glucan Mean (±SD) | ||
SBET | [m2/g] | 14.15 (±0.12) | 0.5 (±0.02) | yes, p ≤ 0.0001 |
Smicro | [m2/g] | 1.82 (±0.46) | 0.04 (±0.06) | yes, p = 0.0026 |
Sext | [m2/g] | 12.32 (±0.38) | 0.47 (±0.06) | yes, p ≤ 0.0001 |
mesopore diameter | [nm] | 9.54 (±0.21) | 15.75 (±0.59) | yes, p ≤ 0.0001 |
maximum pore volume | [cm3/g] | 0.03 (±0) | 0.002 (±0) | yes, p ≤ 0.0001 |
median pore width | [nm] | 36.04 (±0.62) | 82.84 (±5.06) | yes, p ≤ 0.0001 |
Parameter | Sample | Statistically Significant Difference * | |
---|---|---|---|
HAP/Glucan Mean (±SD) | FAP/Glucan Mean (±SD) | ||
Ra (roughness average) | 34.1 (±3.49) | 27.6 (±9.868) | no, p = 0.0649 |
Rq (root mean square average) | 42.8 (±3.665) | 37.6 (±10.98) | no, p = 0.1781 |
Rp (maximum profile peak height) | 134 (±18.96) | 352 (±54.12) | yes, p ≤ 0.0001 |
Rv (maximum profile valley depth) | −231.6 (±34.61) | −273.3 (±44.66) | yes, p = 0.0315 |
Rt (maximum height of the profile) | 365.7 (±42.25) | 625.3 (±77.2) | yes, p ≤ 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowski, L.; Palka, K.; Pajchel, L. Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite. Materials 2025, 18, 4538. https://doi.org/10.3390/ma18194538
Borkowski L, Palka K, Pajchel L. Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite. Materials. 2025; 18(19):4538. https://doi.org/10.3390/ma18194538
Chicago/Turabian StyleBorkowski, Leszek, Krzysztof Palka, and Lukasz Pajchel. 2025. "Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite" Materials 18, no. 19: 4538. https://doi.org/10.3390/ma18194538
APA StyleBorkowski, L., Palka, K., & Pajchel, L. (2025). Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite. Materials, 18(19), 4538. https://doi.org/10.3390/ma18194538