Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Fresh Properties of SCC
3.2. Bulk Density and Open Porosity
3.3. Static and Dynamic Elastic Properties
3.4. Compressive and Splitting Tensile Strength
3.5. Internal Pore Structure
4. Discussion
4.1. Static and Dynamic Elastic Moduli
4.2. Compressive Strength
4.3. Pore Structure
5. Conclusions
- There is little difference between the bulk density values of the considered SCC mixes at the long age. At the same time, the open porosity ranges from 8.54% to 12.9% and it is influenced by the cement content of the mix.
- Compressive strength values increase compared to the standard testing age of 28 days. The increase rate is, however, inversely proportional to the cement content.
- There is a good correlation between the conversion equations from the dynamic modulus of elasticity to the static one. Some of the existing equations tend to slightly overestimate the experimental results, while others underestimate the results.
- The increased cement content and lower aggregate volume results in a lower volume of internal pores, as well as lower maximum pore radius, as determined through industrial CT scanning on the intact SCC cylinders. At the same time, the sphericity of the internal pores does not seem to be significantly influenced by the SCC mix proportion. Increasing the cement content above 340 kg/m3 has little influence on the internal pore structure of the SCC.
- The total internal porosity has a more significant influence on the compressive strength of SCC mixes than on the static modulus of elasticity. The values of the latter decrease at a much lower rate with respect to increasing internal porosity compared to the compressive strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Liu, S.; Yu, L.; Xu, L. A Comprehensive Study on the Hardening Features and Performance of Self-Compacting Concrete with High-Volume Fly Ash and Slag. Materials 2021, 14, 4286. [Google Scholar] [CrossRef]
- Rudnicki, T. Design of Self-Compacting Concrete with Reduced Cement Content by Aggregate Packing Method. Materials 2024, 18, 4. [Google Scholar] [CrossRef]
- Fares, G.; El-Sayed, A.K.; Alhozaimy, A.M.; Al-Negheimish, A.I.; Albidah, A.S. Lightweight SCC Development in a Low-Carbon Cementitious System for Structural Applications. Materials 2023, 16, 4395. [Google Scholar] [CrossRef]
- Zitouni, K.; Djerbi, A.; Mebrouki, A. Study on the Microstructure of the New Paste of Recycled Aggregate Self-Compacting Concrete. Materials 2020, 13, 2114. [Google Scholar] [CrossRef] [PubMed]
- Anjos, M.A.S.D.; Camões, A.; Malheiro, R.; Maia Pederneiras, C.; Peixoto, L.K.S. Experimental Study of Carbonation and Chloride Resistance of Self-Compacting Concretes with a High Content of Fly Ash and Metakaolin, with and Without Hydrated Lime. Materials 2025, 18, 422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Liu, Q.; Han, F.; Liu, S.; Zhang, G.; Zhu, J. Impermeability and Durability of Self-Compacting Concrete Prepared with Aeolian Sand and Recycled Coarse Aggregate. Materials 2023, 16, 7279. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.A.; Ahmed, S.K.; Alsafi, S.; Abullah, M.M.A.B.; Jaya, R.P.; Abd Rahim, S.Z.; Aziz, I.H.; Thanaya, I.N.A. Strength and Durability of Sustainable Self-Consolidating Concrete with High Levels of Supplementary Cementitious Materials. Materials 2022, 15, 7991. [Google Scholar] [CrossRef]
- Klemczak, B.; Gołaszewski, J.; Smolana, A.; Gołaszewska, M.; Cygan, G. Shrinkage Behaviour of Self-Compacting Concrete with a High Volume of Fly Ash and Slag Experimental Tests and Analytical Assessment. Constr. Build. Mater. 2023, 400, 132608. [Google Scholar] [CrossRef]
- Murtaza, M.; Zhang, J.; Yang, C.; Cui, X.; Su, C.; Ramadan, A.N. Performance Analysis of Self Compacting Concrete by Incorporating Fly Ash, Coal Gangue Powder, Cement Kiln Dust and Recycled Concrete Powder by Absolute Volume Method. Constr. Build. Mater. 2024, 431, 136601. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Geng, G.; Marchon, D.; Li, J.; Alapati, P.; Kurtis, K.E.; Qomi, M.J.A. Advances in Characterizing and Understanding the Microstructure of Cementitious Materials. Cem. Concr. Res. 2019, 124, 105806. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, Z.; Duan, Z.; Zhang, C. Pore Structure Characteristics, Modulation and Its Effect on Concrete Properties: A Review. Constr. Build. Mater. 2023, 397, 132430. [Google Scholar] [CrossRef]
- Łaźniewska-Piekarczyk, B. Examining the Possibility to Estimate the Influence of Admixtures on Pore Structure of Self-Compacting Concrete Using the Air Void Analyzer. Constr. Build. Mater. 2013, 41, 374–387. [Google Scholar] [CrossRef]
- Bao, L.; Xu, G.; Li, H.; Xin, C.; Li, H.; He, M.; Liu, C. The Study of the Three-Parameter Normal Distribution Characteristics of the Pore Structure in C80 High-Performance Self-Compacting Concrete (HPSCC). J. Compos. Sci. 2024, 8, 510. [Google Scholar] [CrossRef]
- Xu, G.; He, M.; He, L.; Chen, Y.; Duan, L.; Jiao, W. A Study on the Relationship Between the Pore Characteristics of High-Performance Self-Compacting Concrete (HPSCC) Based on Fractal Theory and the Function of the Water–Binder Ratio (W/C). J. Compos. Sci. 2025, 9, 66. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, D.; Han, P.; Ma, Z. Study on the Mechanical Properties and Pore Structure of Granulated Blast Furnace Slag Self-Compacting Concrete Based on Grey Correlation Theory. J. Asian Archit. Build. Eng. 2024, 23, 634–648. [Google Scholar] [CrossRef]
- Wang, H.; Li, P.; An, X.; Wang, D.; Ji, G. The Evolution of Microstructure and Compressive Strength of Self-Compacting Concrete Affected by Early-Age Loading: Experiments and Multi-Scale Coupling Model. Constr. Build. Mater. 2025, 482, 141614. [Google Scholar] [CrossRef]
- Morales-Cantero, A.; Cuesta, A.; De La Torre, A.G.; Mazanec, O.; Borralleras, P.; Weldert, K.S.; Gastaldi, D.; Canonico, F.; Aranda, M.A.G. Portland and Belite Cement Hydration Acceleration by C-S-H Seeds with Variable w/c Ratios. Materials 2022, 15, 3553. [Google Scholar] [CrossRef]
- Pinheiro, D.G.L.; Sousa, M.I.C.; Pelisser, F.; Da Silva Rêgo, J.H.; Moragues Terrades, A.; Frías Rojas, M. Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica. Materials 2023, 16, 1837. [Google Scholar] [CrossRef]
- Beaudoin, J.J. Porosity Measurement of Some Hydrated Cementitious Systems by High Pressure Mercury Intrusion-Microstructural Limitations. Cem. Concr. Res. 1979, 9, 771–781. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Rashid, A.R.M.H.; Olabi, A.G. Characterization of Porous Glass and Ceramics by Mercury Intrusion Porosimetry. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-803581-8. [Google Scholar]
- Yao, Y.; Liu, D. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel 2012, 95, 152–158. [Google Scholar] [CrossRef]
- Toma, I.-O.; Stoian, G.; Rusu, M.-M.; Ardelean, I.; Cimpoeşu, N.; Alexa-Stratulat, S.-M. Analysis of Pore Structure in Cement Pastes with Micronized Natural Zeolite. Materials 2023, 16, 4500. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, I. The Effect of an Accelerator on Cement Paste Capillary Pores: NMR Relaxometry Investigations. Molecules 2021, 26, 5328. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.M.; Vilau, C.; Dudescu, C.; Pascuta, P.; Popa, F.; Ardelean, I. Characterization of the Influence of an Accelerator upon the Porosity and Strength of Cement Paste by Nuclear Magnetic Resonance (NMR) Relaxometry. Anal. Lett. 2023, 56, 303–311. [Google Scholar] [CrossRef]
- Saleh, F.K.; Teodoriu, C.; Sondergeld, C. Review of NMR Studies for Oilwell Cements and Their Importance. ChemEngineering 2021, 5, 18. [Google Scholar] [CrossRef]
- Naber, C.; Kleiner, F.; Becker, F.; Nguyen-Tuan, L.; Rößler, C.; Etzold, M.A.; Neubauer, J. C-S-H Pore Size Characterization Via a Combined Nuclear Magnetic Resonance (NMR)–Scanning Electron Microscopy (SEM) Surface Relaxivity Calibration. Materials 2020, 13, 1779. [Google Scholar] [CrossRef]
- Radica, F.; Casarin, A.; Iezzi, G.; Bravo, M.; De Brito, J.; Galderisi, A.; Brando, G.; Nazzari, M.; Scarlato, P. Cement vs Aggregates and Textures of Aggregates in a Mortar: Comparative Image Analysis Methods and Analytical Protocols. Constr. Build. Mater. 2024, 453, 139033. [Google Scholar] [CrossRef]
- Ren, D.; Xu, J.; Su, S.; Tian, G.; Chen, X.; Zhang, A.; Ai, C. Characterization of Internal Pore Size Distribution and Interconnectivity for Asphalt Concrete with Various Porosity Using 3D CT Scanning Images. Constr. Build. Mater. 2023, 400, 132751. [Google Scholar] [CrossRef]
- Jadala, S.; Biligiri, K.P.; Abdulrahman, F.; Zeiada, W.A. A Novel Approach to Assess Internal Pore Structure and Quantify Tortuosity of Clogged Pervious Concrete through Image Analysis Techniques. Int. J. Pavement Eng. 2024, 25, 2410939. [Google Scholar] [CrossRef]
- Balázs, G.L.; Lublóy, É.; Földes, T. Evaluation of Concrete Elements with X-Ray Computed Tomography. J. Mater. Civ. Eng. 2018, 30, 06018010. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X. Evaluation of Pore and Fiber Distribution Characteristics of Hybrid Fiber Reinforced Lightweight Aggregate Concrete Using X-Ray Computed Tomography. J. Build. Eng. 2023, 80, 108105. [Google Scholar] [CrossRef]
- Promentilla, M.; Cortez, S.; Papel, R.; Tablada, B.; Sugiyama, T. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-Ray Computed Tomography (CT) Images. Materials 2016, 9, 388. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Gao, Y.; Guo, J.; Cao, Y.; Zhang, J. Correlation of Chloride Diffusion Coefficient and Microstructure Parameters in Concrete: A Comparative Analysis Using NMR, MIP, and X-CT. Front. Struct. Civ. Eng. 2020, 14, 1509–1519. [Google Scholar] [CrossRef]
- Luo, Q.; Zhao, L.; Wu, M. Microstructural Damage Characterization of NC-UHPC Composite under Salt Freeze-Thaw Cycles Based on Ex-Situ X-Ray Computed Tomography. Constr. Build. Mater. 2024, 414, 134980. [Google Scholar] [CrossRef]
- Rossi, E.; Governo, S.; Shakoorioskooie, M.; Zhan, Q.; Mundra, S.; Mannes, D.; Kaestner, A.; Angst, U. X-Ray Computed Tomography to Observe the Presence of Water in Macropores of Cementitious Materials. RILEM Tech. Lett. 2024, 8, 165–175. [Google Scholar] [CrossRef]
- Vicente, M.A.; Mena, Á.; Mínguez, J.; González, D.C. Use of Computed Tomography Scan Technology to Explore the Porosity of Concrete: Scientific Possibilities and Technological Limitations. Appl. Sci. 2021, 11, 8699. [Google Scholar] [CrossRef]
- Revilla-Cuesta, V.; Faleschini, F.; Zanini, M.A.; Skaf, M.; Ortega-López, V. Porosity-Based Models for Estimating the Mechanical Properties of Self-Compacting Concrete with Coarse and Fine Recycled Concrete Aggregate. J. Build. Eng. 2021, 44, 103425. [Google Scholar] [CrossRef]
- Silva, Y.F.; Delvasto, S.; Izquierdo, S.; Araya-Letelier, G. Short and Long-Term Physical and Mechanical Characterization of Self-Compacting Concrete Made with Masonry and Concrete Residue. Constr. Build. Mater. 2021, 312, 125382. [Google Scholar] [CrossRef]
- Bai, W.; Ye, D.; Yuan, C.; Guan, J.; Xie, C.; Cao, K. The Effect of Curing Age on Mechanical Properties and Mesoscopic Damage Mechanism of Recycled Aggregate Concrete Modified with Zeolite Powder. J. Build. Eng. 2024, 85, 108694. [Google Scholar] [CrossRef]
- He, Y.; Mote, J.; Lange, D.A. Characterization of Microstructure Evolution of Cement Paste by Micro Computed Tomography. J. Cent. South Univ. 2013, 20, 1115–1121. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Kim, J.-S.; Stephan, D.; Han, T.-S. Overview of the Use of Micro-Computed Tomography (Micro-CT) to Investigate the Relation between the Material Characteristics and Properties of Cement-Based Materials. Constr. Build. Mater. 2019, 229, 116843. [Google Scholar] [CrossRef]
- Bachofner, W.; Suza, D.; Müller, H.S.; Kollegger, J. Long-Term Shrinkage Measurements on Large-Scale Specimens Exposed to Real Environmental Conditions. Materials 2023, 16, 7305. [Google Scholar] [CrossRef]
- SR EN 197-1; Cement. Part I: Composition, Specifications and Conformity Criteria for Normal Use Cements. ASRO Romanian Standards Association: Bucharest, Romania, 2011.
- Valcuende, M.; Marco, E.; Parra, C.; Serna, P. Influence of Limestone Filler and Viscosity-Modifying Admixture on the Shrinkage of Self-Compacting Concrete. Cem. Concr. Res. 2012, 42, 583–592. [Google Scholar] [CrossRef]
- Palm, S.; Proske, T.; Rezvani, M.; Hainer, S.; Müller, C.; Graubner, C.-A. Cements with a High Limestone Content—Mechanical Properties, Durability and Ecological Characteristics of the Concrete. Constr. Build. Mater. 2016, 119, 308–318. [Google Scholar] [CrossRef]
- Belov, V.; Kuliaev, P. Limestone Filler as One of the Cheapest and Best Additive to Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 032054. [Google Scholar] [CrossRef]
- Bradu, A.; Mihai, P.; Budescu, M.; Banu, O.-M.; Taranu, N.; Florea, N. The Comparative Study of the Self-Compacting Concrete and of Vibrated Concrete Properties Including the Complete Characteristic Curve under Compression. Rom. J. Mater. 2017, 47, 379–386. [Google Scholar]
- The European Project Group (EPG). The European Guidelines for Self-Compacting Concrete—Specifications, Production and Use; The European Project Group (EPG): Prague, Czech Republic, 2005. [Google Scholar]
- ACI PRC-237-07; Self-Consolidating Concrete (Reapproved 2019). American Concrete Institute: Farmington Hills, MI, USA, 2007.
- Kou, S.C.; Poon, C.S. Properties of Self-Compacting Concrete Prepared with Coarse and Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2009, 31, 622–627. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Beygi, M.H.A.; Kazemi, M.T.; Vaseghi Amiri, J.; Rahmani, E.; Rabbanifar, S.; Eslami, M. A Comprehensive Investigation into the Effect of Aging and Coarse Aggregate Size and Volume on Mechanical Properties of Self-Compacting Concrete. Mater. Des. 2014, 59, 199–210. [Google Scholar] [CrossRef]
- Petit, J.-Y.; Wirquin, E.; Helnan-Moussa, B. Effect of W/C and Superplasticizer Type on Rheological Parameters of SCC Repair Mortar for Gravitational or Light Pressure Injection. Cem. Concr. Compos. 2011, 33, 1050–1056. [Google Scholar] [CrossRef]
- Alexa-Stratulat, S.-M.; Mihai, P.; Toma, A.-M.; Taranu, G.; Toma, I.-O. Influence of Concrete Strength Class on the Long-Term Static and Dynamic Elastic Moduli of Concrete. Appl. Sci. 2021, 11, 11671. [Google Scholar] [CrossRef]
- SR EN 12350-8; Testing Fresh Concrete—Part 8: Self-Compacting Concrete—Slump-Flow Test. Romanian Standards Association (ASRO): Bucharest, Romania, 2019.
- SR EN 12350-9; Testing Fresh Concrete—Part 9: Self-Compacting Concrete—V-Funnel Test. Romanian Standards Association (ASRO): Bucharest, Romania, 2010.
- SR EN 12350-10; Testing Fresh Concrete—Part 10: Self-Compacting Concrete—L Box Test. Romanian Standards Association (ASRO): Bucharest, Romania, 2010.
- Nguyen, T.L.H.; Roussel, N.; Coussot, P. Correlation between L-Box Test and Rheological Parameters of a Homogeneous Yield Stress Fluid. Cem. Concr. Res. 2006, 36, 1789–1796. [Google Scholar] [CrossRef]
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. C09 Committee ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- SR EN 12390-13; Testing Hardened Concrete. Part 13—Determination of Secant Modulus of Elasticity in Compression. ASRO Romanian Standards Association: Bucharest, Romania, 2021.
- C215-19; Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM—C09 Committee ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- SR EN 12390-3; Testing of Hardened Concrete. Part 3—Compressive Strength of Test Specimens. ASRO Romanian Standards Association: Bucharest, Romania, 2019.
- SR EN 12390-6; Testing of Hardened Concrete. Part 6—Splitting Tensile Strength of Test Specimens. ASRO Romanian Standards Association: Bucharest, Romania, 2010.
- Brisard, S.; Serdar, M.; Monteiro, P.J.M. Multiscale X-Ray Tomography of Cementitious Materials: A Review. Cem. Concr. Res. 2020, 128, 105824. [Google Scholar] [CrossRef]
- Thompson, A.; Senin, N.; Maskery, I.; Leach, R. Effects of Magnification and Sampling Resolution in X-Ray Computed Tomography for the Measurement of Additively Manufactured Metal Surfaces. Precis. Eng. 2018, 53, 54–64. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Wong, T.N.; Tan, M.J. Determine the Effects of Pore Properties on the Mechanical Performances of 3D Concrete Printing Units with Experimental and Numerical Methods. J. Build. Eng. 2024, 92, 109730. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Z.; Hadigheh, S.A. Enhancing X-Ray Micro-CT Analysis for Detecting Voids and Carbon Fibre Features in Fibre-Reinforced Cementitious Composites Using Advanced 3D Gaussian Filtering. Measurement 2025, 249, 117018. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hao, B.-B.; Liu, S.-W.; Yuan, L.-Z. Influence of Early Freezing on the Pore Structure Characteristics of Concrete and Its Correlation with Mechanical Properties. Buildings 2023, 14, 47. [Google Scholar] [CrossRef]
- Islam, G.M.S.; Akter, S.; Reza, T.B. Sustainable High-Performance, Self-Compacting Concrete Using Ladle Slag. Clean. Eng. Technol. 2022, 7, 100439. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, W.; Wu, X.; Gao, B. Sustainable Self-Compacting Concrete Containing High-Amount Industrial by-Product Fly Ash as Supplementary Cementitious Materials. Env. Sci. Pollut. Res. 2022, 29, 3616–3628. [Google Scholar] [CrossRef]
- Alami, M.M.; Erdem, T.K. Effects of Mix-Design Variables on the Workability, Rheology and Stability of Self-Consolidating Concrete. Rev. Construcción 2022, 21, 703–716. [Google Scholar] [CrossRef]
- Stratulat, S.; Bradu, A.; Toma, I.O. Dynamic and Environmental Assessment of Self-Compacting Concrete. Bull. Polytech. Inst. Jassy. Constr. Archit. Sect. 2020, 66, 27–40. [Google Scholar]
- Guessoum, M.; Boukhelf, F.; Khadraoui, F. Full Characterization of Self-Compacting Concrete Containing Recycled Aggregates and Limestone. Materials 2023, 16, 5842. [Google Scholar] [CrossRef]
- Vicente, M.A.; Mínguez, J.; González, D.C. Variation of the Pore Morphology during the Early Age in Plain and Fiber-Reinforced High-Performance Concrete under Moisture-Saturated Curing. Materials 2019, 12, 975. [Google Scholar] [CrossRef]
- Toma, I.-O.; Alexa-Stratulat, S.-M.; Mihai, P.; Toma, A.-M.; Taranu, G. Experimental Investigations on the Long Term Material Properties of Rubberized Portland Cement Concrete. Appl. Sci. 2021, 11, 10868. [Google Scholar] [CrossRef]
- Popovics, S. Verification of Relationships between Mechanical Properties of Concrete-like Materials. Mat. Constr. 1975, 8, 183–191. [Google Scholar] [CrossRef]
- Lydon, F.D.; Balendran, R.V. Some Observations on Elastic Properties of Plain Concrete. Cem. Concr. Res. 1986, 16, 314–324. [Google Scholar] [CrossRef]
- SR EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. Romanian Standards Association (ASRO): Bucharest, Romania, 2004.
- Jiang, Z.; Yang, Q.; Wang, B.; Li, C.; Zhang, J.; Ren, Q. Limestone Filler as a Mineral Additive on the Compressive Strength and Durability of Self-Compacting Concrete with Limestone Manufactured Sand. J. Build. Eng. 2024, 94, 109965. [Google Scholar] [CrossRef]
- Boutlikht, M.; Douadi, A.; Khitas, N.E.H.; Messai, A.; Hebbache, K.; Belebchouche, C.; Smarzewski, P.; Tawfik, T.A. Optimizing of Self-Compacting Concrete (SCC): Synergistic Impact of Marble and Limestone Powders—A Technical and Statistical Analysis. Buildings 2025, 15, 1043. [Google Scholar] [CrossRef]
- Ouyang, X.; Koleva, D.A.; Ye, G.; Van Breugel, K. Insights into the Mechanisms of Nucleation and Growth of C–S–H on Fillers. Mater. Struct. 2017, 50, 213. [Google Scholar] [CrossRef]
- She, W.; Zhao, G.; Cai, D.; Jiang, J.; Cao, X. Numerical Study on the Effect of Pore Shapes on the Thermal Behaviors of Cellular Concrete. Constr. Build. Mater. 2018, 163, 113–121. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Lv, C.; Zhang, G.; Yin, Y. A Predictive Model of the Effective Tensile and Compressive Strengths of Concrete Considering Porosity and Pore Size. Constr. Build. Mater. 2018, 170, 520–526. [Google Scholar] [CrossRef]
- Martínez-García, R.; Sánchez De Rojas, M.I.; Jagadesh, P.; López-Gayarre, F.; Morán-del-Pozo, J.M.; Juan-Valdes, A. Effect of Pores on the Mechanical and Durability Properties on High Strength Recycled Fine Aggregate Mortar. Case Stud. Constr. Mater. 2022, 16, e01050. [Google Scholar] [CrossRef]
- Kruger, J.; Van Der Westhuizen, J.-P. Investigating the Poisson Ratio of 3D Printed Concrete. Appl. Sci. 2023, 13, 3225. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Jia, Z.; Cao, R.; Wang, W.; Banthia, N.; Chen, C.; Xiong, Y.; Chen, Y.; Zhang, Y. Quantitative Characterization of Bubble Stability of Foam Concrete throughout Extrusion Process: From Yield Stress, Viscosity and Surface Tension Point of View. Compos. Part B Eng. 2024, 284, 111724. [Google Scholar] [CrossRef]
- Zeng, X.; Lan, X.; Zhu, H.; Liu, H.; Umar, H.A.; Xie, Y.; Long, G.; Ma, C. A Review on Bubble Stability in Fresh Concrete: Mechanisms and Main Factors. Materials 2020, 13, 1820. [Google Scholar] [CrossRef]
- Liu, D.; Šavija, B.; Smith, G.E.; Flewitt, P.E.J.; Lowe, T.; Schlangen, E. Towards Understanding the Influence of Porosity on Mechanical and Fracture Behaviour of Quasi-Brittle Materials: Experiments and Modelling. Int. J. Fract. 2017, 205, 57–72. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | MgO | TiO2 |
---|---|---|---|---|---|---|---|---|---|
61.54 | 18.92 | 4.86 | 2.5 | 1.9 | 3.1 | 0.25 | 0.98 | 1.89 | 0.17 |
Concrete Mix | Cement | Sand [0–4 mm] | Aggregates [4–16 mm] | Limestone Filler | Water/Cement | Water/Powder * | HRWR |
---|---|---|---|---|---|---|---|
[kg/m3] | [kg/m3] | [kg/m3] | [kg/m3] | - | - | [L/m3] | |
SCC 1 | 320 | 814 | 881 | 160 | 0.53 | 0.35 | 4.5 |
SCC 2 | 340 | 809 | 876 | 150 | 0.38 | 5.1 | |
SCC 3 | 360 | 809 | 876 | 130 | 0.34 | 5.1 |
Concrete Mix | Sump Flow | T500 | V-Funnel | L-Box |
---|---|---|---|---|
[mm] | [s] | [s] | ||
SCC 1 | 680 | 4.2 | 14.4 | 0.84 |
SCC 2 | 690 | 4.1 | 11.3 | 0.88 |
SCC 3 | 720 | 2.9 | 9.2 | 0.93 |
Concrete Mix | Bulk Density | StDev | COV | Open Porosity |
---|---|---|---|---|
[kg/m3] | [kg/m3] | [%] | [%] | |
SCC 1 | 2278 | 11.05 | 0.49 | 12.9 |
SCC 2 | 2291 | 7.10 | 0.31 | 11.08 |
SCC 3 | 2300 | 11.99 | 0.52 | 8.54 |
Concrete Mix | Longitudinal Frequency of Vibration | StDev | COV | Torsional Frequency of Vibration | StDev | COV |
---|---|---|---|---|---|---|
[Hz] | [Hz] | [%] | [Hz] | [Hz] | [%] | |
SCC 1 | 9954.9 | 142.98 | 1.44 | 6628 | 79.04 | 1.19 |
SCC 2 | 10,030.3 | 53.73 | 0.54 | 6668.4 | 45.41 | 0.68 |
SCC 3 | 10,082 | 99.12 | 0.98 | 6712.4 | 40.26 | 0.6 |
Concrete Mix | Internal Porosity | Compressive Strength | StDev | COV | Static Modulus of Elasticity | StDev | COV |
---|---|---|---|---|---|---|---|
[%] | [MPa] | {MPa] | [%] | [GPa] | [GPa] | [%] | |
SCC 1 | 0.9 | 46.73 | 2.11 | 4.51 | 28.62 | 1.47 | 5.14 |
SCC 2 | 0.7 | 49.66 | 1.65 | 3.33 | 28.76 | 1.02 | 3.54 |
SCC 3 | 0.635 | 51.17 | 1.19 | 2.33 | 30.14 | 1.81 | 6.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, O.-M.; Alexa-Stratulat, S.-M.; Mathe, A.-E.; Brando, G.; Toma, I.-O. Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography. Materials 2025, 18, 4524. https://doi.org/10.3390/ma18194524
Banu O-M, Alexa-Stratulat S-M, Mathe A-E, Brando G, Toma I-O. Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography. Materials. 2025; 18(19):4524. https://doi.org/10.3390/ma18194524
Chicago/Turabian StyleBanu, Oana-Mihaela, Sergiu-Mihai Alexa-Stratulat, Aliz-Eva Mathe, Giuseppe Brando, and Ionut-Ovidiu Toma. 2025. "Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography" Materials 18, no. 19: 4524. https://doi.org/10.3390/ma18194524
APA StyleBanu, O.-M., Alexa-Stratulat, S.-M., Mathe, A.-E., Brando, G., & Toma, I.-O. (2025). Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography. Materials, 18(19), 4524. https://doi.org/10.3390/ma18194524