Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Characterization of the Iron Rust Phases
2.3. The Simulated Experiment Procedures
3. Results and Discussion
3.1. Morphological Features of the Electrolytes Formed During Atmospheric Corrosion Induced by NaCl Deliquescence
3.2. Constituents of Corrosion Products Formed in Single Droplet
3.3. Parameters That Influenced the Formation of Akaganeite During Deliquescence
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corvo, F.; Betancourt, N.; Mendoza, A. The influence of airborne salinity on the atmospheric corrosion of steel. Corros. Sci. 1995, 37, 1889–1901. [Google Scholar] [CrossRef]
- Corvo, F.; Haces, C.; Betancourt, N.; Maldonado, L.; Véleva, L.; Echeverria, M.; De Rincón, O.T.; Rincon, A. Atmospheric corrosivity in the Caribbean area. Corros. Sci. 1997, 39, 823–833. [Google Scholar] [CrossRef]
- Ma, Y.T.; Li, Y.; Wang, F.H. The effect of beta-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment. Mater. Chem. Phys. 2008, 112, 844–852. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Wang, F. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros. Sci. 2009, 51, 997–1006. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Wang, F. Weatherability of 09CuPCrNi steel in a tropical marine environment. Corros. Sci. 2009, 51, 1725–1732. [Google Scholar] [CrossRef]
- Cai, S.; Ji, H.; Li, M.; Zhao, Z.; Gao, Z.; Zhu, F. Corrosion Mechanism and Simulation of Q235 Steel in Typical Marine Atmospheric Environment. Mater. Corros. 2025, 76, 1199–1217. [Google Scholar] [CrossRef]
- Surnam, B.Y.R.; Ma, X.; Pedrazzini, S.; Bilsland, C.; Kootab, Z.S. Atmospheric Corrosion of Weathering and Mild Steels in the High Salinity Environment of Mauritius. Surf. Interface Anal. 2025, 57, 619–629. [Google Scholar] [CrossRef]
- Paterlini, L.; Brenna, A.; Ceriani, F.; Gamba, M.; Ormellese, M.; Bolzoni, F. Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure. Materials 2024, 17, 6211. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, L.; Chai, P.; Liu, N.; Song, L.; Liu, Z.; Li, X. Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea. Int. J. Miner. Metall. Mater. 2022, 29, 2041–2052. [Google Scholar] [CrossRef]
- Kamimura, T.; Hara, S.; Miyuki, H.; Yamashita, M.; Uchida, H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci. 2006, 48, 2799–2812. [Google Scholar] [CrossRef]
- Yamashita, M.; Maeda, A.; Uchida, H.; Kamimura, T.; Miyuki, H. Crystalline rust compositions and weathering properties of steels exposed in nation-wide atmospheres for 17 years. J. Jpn. Inst. Met. 2001, 65, 967–971. [Google Scholar] [CrossRef]
- Kamimura, T.; Nasu, S.; Tazaki, T.; Kuzushita, K.; Morimoto, S. Mossbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment. Mater. Trans. 2002, 43, 694–703. [Google Scholar] [CrossRef]
- Nishimura, T.; Katayama, H.; Noda, K.; Kodama, T. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions. Corrosion 2000, 56, 935–941. [Google Scholar] [CrossRef]
- Hara, S.; Kamimura, T.; Miyuki, H.; Yamashita, M. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 2007, 49, 1131–1142. [Google Scholar] [CrossRef]
- Morcillo, M.; Gonzalez-Calbet, J.M.; Jimenez, J.A.; Diaz, I.; Alcantara, J.; Chico, B.; Mazario-Fernandez, A.; Gomez-Herrero, A.; Llorente, I.; de la Fuente, D. Environmental Conditions for Akaganeite Formation in Marine Atmosphere Mild Steel Corrosion Products and Its Characterization. Corrosion 2015, 71, 872–886. [Google Scholar] [CrossRef]
- Morcillo, M.; Chico, B.; Alcántara, J.; Díaz, I.; Simancas, J.; de la Fuente, D. Atmospheric corrosion of mild steel in chloride-rich environments. Questions to be answered. Mater. Corros. 2015, 66, 882–892. [Google Scholar] [CrossRef]
- Hoerle, S.; Mazaudier, F.; Dillmann, P.; Santarini, G. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet–dry cycles. Corros. Sci. 2004, 46, 1431–1465. [Google Scholar] [CrossRef]
- Hayashida, S.; Takahashi, M.; Deguchi, H.; Tsuchiya, H.; Hanaki, K.; Yamashita, M.; Fujimoto, S. Structure of Corrosion Product Formed on Carbon Steel Covered with NiSO4-Added Resin Coating under Sulfuric Acid Mist Environment Containing Chloride. Mater. Trans. 2021, 62, 781–787. [Google Scholar] [CrossRef]
- Zafar, F.; Bano, H.; Wahab, M.F.; Corvo, F. Mild steel corrosion behavior in a coastal megacity relevant to China Pakistan economic corridor. NPJ Mater. Degrad. 2023, 7, 37. [Google Scholar] [CrossRef]
- Schindelholz, E.; Kelly, R.G. Wetting phenomena and time of wetness in atmospheric corrosion: A review. Corros. Rev. 2012, 30, 135–170. [Google Scholar] [CrossRef]
- Schindelholz, E.; Risteen, B.E.; Kelly, R.G. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: II. MgCl2, artificial seawater. J. Electrochem. Soc. 2014, 161, C460. [Google Scholar] [CrossRef]
- Weissenrieder, J.; Leygraf, C. In Situ Studies of Filiform Corrosion of Iron. J. Electrochem. Soc. 2004, 151, B165. [Google Scholar] [CrossRef]
- Li, S.X.; Hihara, L.H. Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres. Corros. Eng. Sci. Technol. 2010, 45, 49–56. [Google Scholar] [CrossRef]
- Li, C.L.; Ma, Y.T.; Li, Y.; Wang, F.H. EIS monitoring study of atmospheric corrosion under variable relative humidity. Corros. Sci. 2010, 52, 3677–3686. [Google Scholar] [CrossRef]
- Refait, P.; Remazeilles, C. On the formation of beta-FeOOH (akaganeite) in chloride-containing environments. Corros. Sci. 2007, 49, 844–857. [Google Scholar]
- Xiao, H.; Ye, W.; Song, X.; Ma, Y.; Li, Y. Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests. Materials 2017, 10, 1262. [Google Scholar] [CrossRef]
- Refait, P.; Genin, J.M.R. The mechanisms of oxidation of ferrous hydroxychloride beta-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs. goethite. Corros. Sci. 1997, 39, 539–553. [Google Scholar] [CrossRef]
- Xiao, H.; Ye, W.; Song, X.; Ma, Y.; Li, Y. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment. J. Mater. Sci. Technol. 2017, 34, 1387–1396. [Google Scholar] [CrossRef]
- Li, S.; Hihara, L.H. In situ raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel. J. Electrochem. Soc. 2012, 159, C147. [Google Scholar] [CrossRef]
- Forsberg, J.; Hedberg, J.; Leygraf, C.; Nordgren, J.; Duda, L.C. The Initial Stages of Atmospheric Corrosion of Iron in a Saline Environment Studied with Time-Resolved In Situ X-Ray Transmission Microscopy. J. Electrochem. Soc. 2010, 157, C110. [Google Scholar] [CrossRef]
- ISO 9223:1992; Corrosion of Metals and Alloys Corrosivity of Atmospheres—Classication. ISO: Geneva, Switzerland, 1992.
- Xiao, H.; Ye, W.; Song, X.; Wang, Y.; Ma, Y.; Li, Y. Determination of the key parameters involved in the formation process of akaganeite in a laboratory-simulated wet-dry cyclic process. Corros. Sci. 2017, 128, 130–139. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Tanaka, S. Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions. J. Solid State Electr. 2015, 19, 3559–3566. [Google Scholar] [CrossRef]
- Cambier, S.M.; Verreault, D.; Frankel, G.S. Raman investigation of anodic undermining of coated steel during environmental exposure. Corrosion 2014, 70, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Morcillo, M.; Wolthuis, R.; Alcántara, J.; Chico, B.; Díaz, I.; De La Fuente, D. Scanning Electron Microscopy/Micro-Raman: A Very Useful Technique for Characterizing the Morphologies of Rust Phases Formed on Carbon Steel in Atmospheric Exposures. Corrosion 2016, 72, 1044–1054. [Google Scholar] [CrossRef]
- Li, S.; Hihara, L.H. A Micro-Raman Spectroscopic Study of Marine Atmospheric Corrosion of Carbon Steel: The Effect of Akaganeite. J. Electrochem. Soc. 2015, 162, C495–C502. [Google Scholar] [CrossRef]
- Hiller, J. Phasenumwandlungen im rost. Mater. Corros. 1966, 17, 943–951. [Google Scholar] [CrossRef]
- Misawa, T.; Asami, K.; Hashimoto, K.; Shimodaira, S. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corros. Sci. 1974, 14, 279–289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Zhang, H.; Guo, Y.; Hao, H.; Chang, H.; Li, Y. Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment. Materials 2025, 18, 4462. https://doi.org/10.3390/ma18194462
Xiao H, Zhang H, Guo Y, Hao H, Chang H, Li Y. Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment. Materials. 2025; 18(19):4462. https://doi.org/10.3390/ma18194462
Chicago/Turabian StyleXiao, Haigang, Hongbo Zhang, Yan Guo, Hongduo Hao, Hao Chang, and Ying Li. 2025. "Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment" Materials 18, no. 19: 4462. https://doi.org/10.3390/ma18194462
APA StyleXiao, H., Zhang, H., Guo, Y., Hao, H., Chang, H., & Li, Y. (2025). Formation of Akaganeite in Atmospheric Corrosion of Carbon Steel Induced by NaCl Particles in an 85% RH Environment. Materials, 18(19), 4462. https://doi.org/10.3390/ma18194462