Effect of Ultra-Rapid Heating/Cooling on the Microstructure and Properties of TC4-B-Si Titanium Matrix Composites
Abstract
1. Introduction
2. Experimental
2.1. Preparation of Composite Powder
2.2. SLM Process
2.3. Microstructure Characterization and Microhardness
3. Result and Discussion
3.1. Densification Behavior
3.2. Phase Identification
3.3. Microstructure Characterization
3.4. Microhardness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, H.Y.; Wang, J.; Qin, P.; Liu, Y.; Chen, L.Y.; Wang, L.; Zhang, L. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior. J. Mater. Sci. Technol. 2024, 183, 32–62. [Google Scholar] [CrossRef]
- Yang, X.; Ma, W.J.; Zhang, Z.Y.; Liu, S.F.; TANG, H.P. Ultra-high specific strength Ti6Al4V alloy lattice material manufactured via selective laser melting. Mater. Sci. Eng. A 2022, 840, 142956. [Google Scholar] [CrossRef]
- Wang, X.; Qin, P.; Chen, L.Y.; Sun, H.; Zhang, L. Corrosion behavior and mechanisms of the heat-treated Ti5Cu produced by laser powder bed fusion. Corros. Sci. 2023, 221, 111336. [Google Scholar] [CrossRef]
- Ge, S.W.; Hu, P.; Deng, J.; Li, S.L.; Xing, H.R.; Han, J.Y.; Hua, X.J.; Wang, L.; Yang, J.Z.; Jin, B.; et al. The effect of secondary phase on corrosion behaviors of the titanium–zirconium–molybdenum alloy. Tungsten 2024, 6, 342–354. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Gupta, M.K.; El Etri, H.; Korkmaz, M.E.; Ross, N.S.; Krolczyk, G.M.; Gawlik, J.; Yasar, N.; Pimenov, D.Y. Tribological and surface morphological characteristics of titanium alloys: A review. Arch. Civ. Mech. Eng. 2022, 22, 72. [Google Scholar] [CrossRef]
- Liu, R.Y.; Yuan, S.; Lin, N.M.; Zeng, Q.F.; Wang, Z.H.; Wu, Y.C. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys: A mini review. J. Mater. Res. Technol. 2021, 11, 351–377. [Google Scholar] [CrossRef]
- Li, M.H.; Zhang, X.F.; Cao, M.M.; Zhou, Z.; Rao, J.S.; Yi, S.; Zhang, Y.X.; Fu, J.W.; Chen, L.M.; Ding, S.L. Wear resistance of molybdenum disulfide-based coatings on titanium alloys: A review. J. Mater. Sci. 2024, 59, 6662–6684. [Google Scholar] [CrossRef]
- Huang, L.J.; An, Q.; Geng, L.; Wang, S.; Jiang, S.; Cui, X.P.; Zhang, R.; Sun, F.B.; Jiao, Y.; Chen, X. Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Adv. Mater. 2021, 33, 2000688. [Google Scholar] [CrossRef]
- Zhang, F.M.; Wang, J.; Liu, T.F.; Shang, C.Y. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture. Mater. Des. 2020, 186, 108330. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, B.; Cao, L.; Liu, K.Y.; Li, S.; Jia, L.; Kondoh, K.; Li, J.S. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides. J. Mater. Sci. Technol. 2022, 96, 85–93. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Sun, Q.Y.; Xin, S.W.; Chen, Y.N.; Wu, C.; Wang, H.; Xu, J.W.; Wan, M.P.; Zeng, W.D.; Zhao, Y.Q. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Chen, L.Y.; Cui, Y.W.; Zhang, L.C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Parveez, B.; Kittur, M.; Badruddin, I.A.; Kamangar, S.; Hussien, M.; Umarfarooq, M.A. Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers 2022, 14, 5007. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lu, X.N.; Li, J.C.; Wang, H.; Peng, H.X. Composition and architecture design in additive manufacturing of titanium matrix composites. Acta Mater. Compos. Sin. 2024, 41, 1633–1652. [Google Scholar]
- An, Q.; Huang, L.J.; Qian, Q.; Jiang, Y.; Wang, S.; Zhang, R.; Geng, L.; Wang, L. Insights into In-Situ TiB/Dual-Phase Ti Alloy Interface and Its High Load-Bearing Capacity. J. Mater. Sci. Technol. 2022, 119, 156–166. [Google Scholar] [CrossRef]
- Tao, C.Y.; Li, L.Y.; He, N.; Sun, G.D.; Liu, C.Z.; Xu, J.J.; Li, M.Y.; Dong, L.L.; Zhang, Y.S.; Wang, L.W. Microstructure and Mechanical Properties of In-Situ Ti5Si3/TC4 Composites via Spark Plasma Sintering and Hot Rolling. J. Alloys Compd. 2023, 969, 172404. [Google Scholar] [CrossRef]
- Wang, S.S.; Deng, X.Q.; Gao, P.F.; Ren, Z.P.; Wang, X.X.; Feng, H.L.; Zeng, L.Y.; Zhang, Z.D. Physical Constitutive Modelling of Hot Deformation of Titanium Matrix Composites. Int. J. Mech. Sci. 2024, 262, 108712. [Google Scholar] [CrossRef]
- Zhuo, L.C.; Ji, K.L.; Lu, J.W.; Sun, J.C.; Huo, W.T.; Shao, H.; Chen, B.Q.; Zhao, Y.Q. Microstructure Characterization and Tensile Performance of a High-Strength Titanium Alloy with In-Situ Precipitates of Ti5Si3. J. Alloys Compd. 2023, 968, 171867. [Google Scholar] [CrossRef]
- Jiao, Y.; Huang, L.J.; Duan, T.B.; Wei, S.L.; Kaveendran, B.; Geng, L. Controllable Two-Scale Network Architecture and Enhanced Mechanical Properties of (Ti5Si3+TiBw)/Ti6Al4V Composites. Sci. Rep. 2016, 6, 32991. [Google Scholar] [CrossRef]
- Fang, M.H.; Han, Y.F.; Shi, Z.S.; Huang, G.F.; Song, J.W.; Lu, W.J. Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Compos. Pt. B Eng. 2021, 211, 108683. [Google Scholar] [CrossRef]
- Singh, G.; Ramamurty, U. Boron modified titanium alloys. Prog. Mater. Sci. 2020, 111, 100653. [Google Scholar] [CrossRef]
- Ma, X.Z.; Chen, Z.Y.; Xiang, Z.L.; Zhang, S.W.; Ding, X.X.; Li, T. Microstructure and mechanical properties evolution of high-temperature titanium alloys with in situ synthesized TiB whiskers. J. Mater. Eng. Perform. 2025, 34, 2275–2288. [Google Scholar] [CrossRef]
- Postnikova, M.N.; Kotov, A.D.; Bazlov, A.I.; Mosleh, A.O.; Medvedeva, S.V.; Mikhaylovskaya, A.V. Effect of boron on the microstructure, superplastic behavior, and mechanical properties of Ti-4Al-3Mo-1V alloy. Materials 2023, 16, 3714. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Liu, Y.Z.; Liu, X.H.; Zhan, Q.K.; Wang, K.D. Microstructure evolution and mechanical properties of in-situ Ti6Al4V-TiB composites manufactured by selective laser melting. Compos. Pt. B Eng. 2021, 207, 108567. [Google Scholar] [CrossRef]
- Zheng, B.W.; Chen, S.; Yue, C.Y.; Lin, X.J.; Dong, F.Y.; Huang, H.J.; Zuo, X.J.; Wang, Y.X.; Yuan, X.G. Effect of heat treatment on microstructure, mechanical and tribological properties of in-situ (TiC+TiB)/TC4 composites by casting. China Foundry 2023, 20, 207–217. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, Y.D.; Wang, Y.Y.; Bai, Y.; Hao, H.; Zhu, X.R. Microstructures and Mechanical Properties of (TiBw+Ti5Si3)/TC11 Composites Fabricated by Hot Isostatic Pressing and Subjected to 2D Forging. J. Alloys Compd. 2023, 966, 171523. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.F.; Zhang, X.; Li, S.L.; Wang, S.D.; Li, B.; Gao, L.N.; Liu, H.Y.; Hui, D.X.; Pan, D. Synthesis Mechanism of Pelleted Heterostructure Ti64-TiB Composites via an Interdiffusion and Self-Organization Strategy Based on Powder Metallurgy. Compos. Part B Eng. 2024, 276, 111366. [Google Scholar] [CrossRef]
- Su, J.L.; Jiang, F.L.; Teng, J.; Chen, L.Q.; Yan, M.; Requena, G.; Zhang, L.C.; Wang, Y.M.; Okulov, I.; Zhu, H.M. Recent innovations in laser additive manufacturing of titanium alloys. Int. J. Extrem. Manuf. 2024, 6, 032001. [Google Scholar] [CrossRef]
- Cao, S.; Zou, Y.C.; Lim, C.V.S.; Wu, X.H. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property. Light Adv. Manuf. 2021, 2, 313–332. [Google Scholar] [CrossRef]
- Singh, N.; Hameed, P.; Ummethala, R.; Manivasagam, G.; Prashanth, K.G.; Eckert, J. Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters, application trends, and future prospects. Mater. Today Adv. 2020, 8, 100097. [Google Scholar] [CrossRef]
- Singla, A.K.; Banerjee, M.; Sharma, A.; Singh, J.; Bansal, A.; Gupta, M.K.; Khanna, N.; Shahi, A.S.; Goyal, D.K. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. J. Manuf. Process. 2021, 64, 161–187. [Google Scholar] [CrossRef]
- Li, Y.L.; Gu, D.D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Chen, J.Q.; Xiong, J.; Wu, Y.; Dong, S.Y. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel. J. Manuf. Process. 2020, 57, 533–542. [Google Scholar] [CrossRef]
- Dai, D.H.; Gu, D.D.; Ge, Q.; Li, Y.Z.; Shi, X.Y.; Sun, Y.X.; Li, S.H. Mesoscopic study of thermal behavior, fluid dynamics and surface morphology during selective laser melting of Ti-based composites. Comput. Mater. Sci. 2020, 177, 109598. [Google Scholar] [CrossRef]
- Jiang, Q.H.; Li, S.; Guo, S.; Fu, M.W.; Zhang, B. Comparative Study on Process-Structure-Property Relationships of TiC/Ti6Al4V and Ti6Al4V by Selective Laser Melting. Int. J. Mech. Sci. 2023, 241, 107963. [Google Scholar] [CrossRef]
- Xie, Q.S.; Liu, W.; Yan, X.P.; Zheng, H.; Li, Z.H.; Zhao, Z.Y.; Li, Y.X. Effects of Process Parameters on Properties of Silver-Coated Graphene Reinforced Low Modulus Titanium Matrix Composites Fabricated by Selective Laser Melting. Adv. Eng. Mater. 2025, 27, 2500030. [Google Scholar] [CrossRef]
- Anonymous. Ring the Changes: Fluid Loops Create Tame Turbulence. Nature 2023, 617, 655. [Google Scholar] [CrossRef]
- Qu, M.L.; Guo, Q.L.; Escano, L.I.; Yuan, J.D.; Hojjatzadeh, S.M.H.; Clark, S.J.; Fezzaa, K.; Sun, T.; Chen, L.Y. Controlling melt flow by nanoparticles to eliminate surface wave induced surface fluctuation. Addit. Manuf. 2022, 59, 103081. [Google Scholar] [CrossRef]
- Su, Y.; Luo, S.C.; Meng, L.; Gao, P.; Wang, Z.M. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 774–788. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, Y.T.; Huang, W.D.; Qin, S.S.; Wang, L. Microstructure evolution and mechanical properties of TiB/Ti6Al4V composites based on selective laser melting. J. Min. Metall. Sect. B Metall. 2022, 58, 439–450. [Google Scholar] [CrossRef]
- Fu, K.; Liu, Y.Y.; Wang, Y.Q.; Xu, Z.; Jiang, W.; Chen, Z.; Liu, S.Q.; Sun, L.; Zhang, Z.L.; He, J.Y. Grain refinement of Ti6Al4V by incorporating in-situ TiB nanowhiskers in laser melting deposition. J. Mater. Res. Technol. 2023, 27, 2893–2901. [Google Scholar] [CrossRef]
- Liu, C.W.; Li, J.C.; Gao, X.; Mu, Y.K.; He, Z.Y.; Wang, H.; Jia, Y.D.; Yuan, B.; Wang, G.; Peng, H.X. Fundamental approach to superior trade-off between strength and ductility of TiB/Ti64 composites via additive manufacturing: From phase diagram to microstructural design. J. Mater. Sci. Technol. 2025, 221, 220–232. [Google Scholar] [CrossRef]
- Jin, W.; Sharma, P.; Singh, P.; Kundu, A.; Balasubramanian, G.; Chan, H.M. Solid state reduction driven synthesis of Mn containing multi-principal component alloys. Metall. Mater. Trans. A 2024, 55, 3799–3808. [Google Scholar] [CrossRef]
- Liu, C.; Jin, K.-H.; Ye, J.T.; Gao, X.; Wei, X.; Zhang, Z.; Peng, H.-X. Additive manufacturing of (TiB+TiC)/Ti6Al4V composites with tailored network reinforcement architecture. Compos. Commun. 2023, 40, 101611. [Google Scholar] [CrossRef]
- Liu, H.Q.; Fang, M.H.; Han, Y.F.; Huang, G.F.; Sun, Z.G.; Zhang, L.; Lu, W.J. Achieving strength-ductility combination and anisotropy elimination in additively manufactured TiB/Ti6Al4V by in-situ synthesized network architecture with fine grains. Compos. Part B Eng. 2023, 262, 110822. [Google Scholar] [CrossRef]
Powder | Mass Fraction (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
TC4 | Ti | Al | V | Fe | C | H | O | N |
Bal. | 6.13 | 4 | 0.3 | 0.08 | 0.012 | 0.09 | 0.016 |
Sample Number | Laser Power (W) | Laser Scanning Speed (mm/s) | Layer Thickness (mm) | Scan Track Spacing (mm) | Laser Energy Density (J/mm3) |
---|---|---|---|---|---|
1 | 280 | 583 | 0.05 | 0.12 | 80 |
2 | 280 | 667 | 0.05 | 0.12 | 70 |
3 | 280 | 778 | 0.05 | 0.12 | 60 |
4 | 320 | 667 | 0.05 | 0.12 | 80 |
5 | 320 | 762 | 0.05 | 0.12 | 70 |
6 | 320 | 889 | 0.05 | 0.12 | 60 |
7 | 360 | 750 | 0.05 | 0.12 | 80 |
8 | 360 | 857 | 0.05 | 0.12 | 70 |
9 | 360 | 1000 | 0.05 | 0.12 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Li, J.; Liu, C.; Wang, L.; Ma, S.; Yuan, B.; Gong, B.; Ouyang, W.; Wang, H.; Gao, X.; et al. Effect of Ultra-Rapid Heating/Cooling on the Microstructure and Properties of TC4-B-Si Titanium Matrix Composites. Materials 2025, 18, 4223. https://doi.org/10.3390/ma18184223
Lu X, Li J, Liu C, Wang L, Ma S, Yuan B, Gong B, Ouyang W, Wang H, Gao X, et al. Effect of Ultra-Rapid Heating/Cooling on the Microstructure and Properties of TC4-B-Si Titanium Matrix Composites. Materials. 2025; 18(18):4223. https://doi.org/10.3390/ma18184223
Chicago/Turabian StyleLu, Xiaonan, Jianchao Li, Cheng Liu, Likun Wang, Sainan Ma, Bo Yuan, Bowen Gong, Wenting Ouyang, Huan Wang, Xiang Gao, and et al. 2025. "Effect of Ultra-Rapid Heating/Cooling on the Microstructure and Properties of TC4-B-Si Titanium Matrix Composites" Materials 18, no. 18: 4223. https://doi.org/10.3390/ma18184223
APA StyleLu, X., Li, J., Liu, C., Wang, L., Ma, S., Yuan, B., Gong, B., Ouyang, W., Wang, H., Gao, X., Tang, H., & Peng, H.-X. (2025). Effect of Ultra-Rapid Heating/Cooling on the Microstructure and Properties of TC4-B-Si Titanium Matrix Composites. Materials, 18(18), 4223. https://doi.org/10.3390/ma18184223