Modeling the Electrochemical Synthesis of Zinc Oxide Nanoparticles Using Artificial Neural Networks
Abstract
1. Introduction
- Ma et al. developed two ANNs for predicting the thermophysical parameters (thermal conductivity and viscosity) of hybrid nanofluids (Al2O3 nanoparticles, CuO nanoparticles, ethylene glycol, water) [52].
- Zhao and Li developed a radial basis function neural network to predict thermal conductivity and viscosity for alumina–water nanofluids [53].
- Zhu et al. developed an ANN to predict the thermal conductivity of ethylene glycol (EG) and alumina (Al2O3) nanofluids [54].
- Hou et al. developed a backpropagation artificial neural network (BP-ANN) to model the removal efficiency of ethyl violet in wastewater using reduced graphene oxide modified with manganese-doped iron nanoparticles [55].
- Ruan et al. developed ANNs to model the removal of crystal violet from aqueous solutions using bimetallic Fe/Ni nanoparticles supported by reduced graphene oxide [56].
- Khatamian et al. developed a three-layer backpropagation neural network to model the performance of the catalytic degradation process of 4-nitrophenol using ZnO nanoparticles supported on zeolites (ZnO-HZSM-5) [57].
- Melaibari et al. developed an ANN to predict the viscosity of an antifreeze hybrid nanofluid (water–ethylene glycol) containing graphene oxide and copper oxide [58].
- Boateng et al. developed a residual neural network (ResNet) to predict the size of standard nanoparticles and extracellular vesicles [59].
- Smeraldo et al. used ANN to model the effect of microfluidic parameters on nanoparticle size [60].
- Zhou et al. used a unidirectional ANN to predict the changes in crystal size, ultimate stress, and antibacterial activity of zinc oxide nanoparticles [61].
- Vaferi et al. developed multilayer perceptron neural networks to predict the size of alumina agglomerations in water-based nanofluids [62].
- Ragone et al. used convolutional neural networks (CNNs) to detect the atomic column height of gold nanoparticles from high-resolution transmission electron microscopy images [63].
- Frages et al. used ANNs for shape classification of nanoparticles described as 3D models [64].
- Zelenka et al. developed a deep ANN for measuring and classifying bi-metallic nanoparticles (Au-Co and Au-Fe) [65].
- Ijaz et al. developed an ANN to model the synthesis of optimized ZnO nanoflowers [66].
- Liu et al. used ANN to model the effect of iron and nickel nanoparticle additions on the biohydrogen production process (yield and hydrogen evolution rate) [67].
- Muneer et al. developed an ANN to simulate the zeta potential of silica nanofluids [68].
2. Materials and Methods
- Semantic model formulation;
- Selecting neural network types and carrying out the process of learning;
- Choosing and assessing the best neural models.
2.1. Semantic Model Formulation
2.2. Selecting Neural Network’s Type and Carrying out the Process of Learning
- Hyperbolic tangent function in the hiding layer and exponential function in the output layer;
- Hyperbolic tangent function in the hiding layer and logistic function in the output layer;
- Hyperbolic tangent function in the hiding layer and hyperbolic tangent function in the output layer.
2.3. Choosing and Assessing the Best Neural Models
2.4. Sensitivity Analysis
3. Results
- for the particle size variable, the error ratio is 83.7;
- for the temperature variable, the error ratio is 56.1;
- for the solvent variable, the error ratio is 16.1.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belew, A.A.; Assege, M.A. Solvothermal synthesis of metal oxide nanoparticles: A review of applications, challenges, and future perspectives. Results Chem. 2025, 16, 102438. [Google Scholar] [CrossRef]
- Chandramohan, S.; Ramalingam, P.; Krishna, G.S.; Manikandan, E.; Rajagopalan, R. Multifaceted investigation of zinc oxide nanoparticles synthesized from Vernonia elaeagnifolia leaf extract: Characterization, antibacterial, antioxidant, cytotoxicity, and DNA binding activities. Inorg. Chem. Commun. 2025, 177, 114384. [Google Scholar] [CrossRef]
- Memon, R.H.; Khatri, Z.; Ahmed, F.; Memon, A. Preparation and dyeability of lyocell fabric with structural color for apparel application. Mater. Res. Express 2025, 12, 75001. [Google Scholar] [CrossRef]
- Wisz, G.; Virt, I.; Sagan, P.; Potera, P.; Yavorskyi, R. Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Method. Nanoscale Res. Lett. 2017, 12, 253. [Google Scholar] [CrossRef]
- Htwe, S.S. Electrical Properties of ZnO Nanoparticles. Int. J. Sci. Res. Sci. Eng. Technol. 2020, 4099, 1–5. [Google Scholar] [CrossRef]
- Hegde, V.N.; Manju, V.V.; Pradeep, M.T.; Hemaraju, C.B. Study on structural, morphological, elastic and electrical properties of ZnO nanoparticles for electronic device applications. J. Sci. Adv. Mater. Devices 2024, 9, 100733. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 2021, 360, 115544. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Osmond, M.J.; McCall, M.J. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 2010, 4, 15–41. [Google Scholar] [CrossRef]
- Scherzad, A.; Meyer, T.; Kleinsasser, N.; Hackenberg, S. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity. Materials 2017, 10, 1427. [Google Scholar] [CrossRef]
- Fiori, J.J.; Silva, L.L.; Picolli, K.C.; Ternus, R.; Ilha, J.; Decalton, F.; Mello, J.M.M.; Riella, H.G.; Fiori, M.A. Zinc oxide nanoparticles as antimicrobial additive for acrylic paint. Mater. Sci. Forum 2017, 899, 248–253. [Google Scholar] [CrossRef]
- Mohan, M.V.K.; Prakash, T.V.K.B.; Mukherjee, A. Antifouling paint formulations with ZnO and Fe2O3 nano-paints for marine applications. Sustain. Chem. Pharm. 2022, 30, 100858. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Deng, L.; Shen, Z.; Huang, Q.; Shah, N.G.; Chen, W.; Zhang, Y.; Wang, X.; Yu, L.; et al. Antibacterial and antioxidative hydrogel dressings based on tannic acid-gelatin/oxidized sodium alginate loaded with zinc oxide nanoparticles for promoting wound healing. Int. J. Biol. Macromol. 2024, 279, 135177. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Y.; Xiong, H.-M. Photoluminescent ZnO Nanoparticles and Their Biological Applications. Materials 2015, 8, 3101–3127. [Google Scholar] [CrossRef]
- Nagasaki, R.; Nagano, K.; Nezu, T.; Iijima, M. Synthesis and Characterization of Bioactive Glass and Zinc Oxide Nanoparticles with Enamel Remineralization and Antimicrobial Capabilities. Materials 2023, 16, 6878. [Google Scholar] [CrossRef]
- Kaliyaperumal, V.; Rajasekaran, S.; Kanniah, R.; Gopal, D.; Ayyakannu Sundaram, G.; Kumar, A.S.K. Synthesis and Evaluation of Gelatin–Chitosan Biofilms Incorporating Zinc Oxide Nanoparticles and 5-Fluorouracil for Cancer Treatment. Materials 2024, 17, 3186. [Google Scholar] [CrossRef]
- Fodil, N.; Serra, D.; Abdullah, J.A.A.; Domínguez-Robles, J.; Romero, A.; Abdelilah, A. Comparative Effect of Antioxidant and Antibacterial Potential of Zinc Oxide Nanoparticles from Aqueous Extract of Nepeta nepetella through Different Precursor Concentrations. Materials 2024, 17, 2853. [Google Scholar] [CrossRef]
- Babayevska, N.; Przysiecka, Ł.; Nowaczyk, G.; Jarek, M.; Järvekülg, M.; Kangur, T.; Janiszewska, E.; Jurga, S.; Iatsunskyi, I. Fabrication of Gelatin-ZnO Nanofibers for Antibacterial Applications. Materials 2021, 14, 103. [Google Scholar] [CrossRef]
- Mulchandani, N.; Karnad, V. Application of Zinc Oxide nanoparticles on Cotton fabric for imparting Antimicrobial properties. Int. J. Environ. Rehabil. Conserv. 2020, XI, 1–10. Available online: https://eoi.citefactor.org/10.11208/essence.20.11.1.101 (accessed on 1 September 2025).
- Preda, M.D.; Popa, M.L.; Neacșu, I.A.; Grumezescu, A.M.; Ginghină, O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1629. [Google Scholar] [CrossRef]
- Verbič, A.; Šala, M.; Jerman, I.; Gorjanc, M. Novel Green In Situ Synthesis of ZnO Nanoparticles on Cotton Using Pomegranate Peel Extract. Materials 2021, 14, 4472. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, T.; Liu, L.-Z.; Tian, C.; Cui, Y.; Shao, W.; Hua, X.; Shi, Y.; Wang, Y. Antibacterial properties and mechanism of nanometer zinc oxide composites. Food Packag. Shelf Life 2023, 40, 101167. [Google Scholar] [CrossRef]
- Faizan, M.; Hayat, S.; Pichtel, J. Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. In Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development; Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 83–99. ISBN 978-3-030-33996-8. [Google Scholar]
- Starowicz, M.; Stypuła, B. Electrochemical synthesis of ZnO nanoparticles. Eur. J. Inorg. Chem. 2008, 2008, 869–872. [Google Scholar] [CrossRef]
- Stypuła, B.; Starowicz, M.; Kasprzyk, D.; Hajos, M. Anodowe roztwarzanie cynku w alkoholowych roztworach elektrolitów (Anodic dissolution of zinc in alcoholic solutions of electrolytes). Ochr. Przed Korozją 2009, 11, 551–553. (In Polish) [Google Scholar]
- Stypuła, B.; Starowicz, M.; Hajos, M.; Olejnik, E. Electrochemical synthesis of ZnO nanoparticles during anodic dissolution of zinc in alcohols solvents. Arch. Metall. Mater. 2011, 56, 287–292. [Google Scholar] [CrossRef]
- Stypuła, B.; Banaś, J.; Habdank-Wojewódzki, T.; Krawiec, H.; Starowicz, M. Sposób Otrzymywania Mikro- I Nanocząstek Tlenków Metali (Method for Obtaining Micro- and Nanoparticles of Metal Oxides). PL Patent P.369320, 27 July 2004. (In Polish). [Google Scholar]
- Sportelli, M.C.; Picca, R.A.; Izzi, M.; Palazzo, G.; Gristina, R.; Innocenti, M.; Torsi, L.; Cioffi, N. ZnO nanostructures with antibacterial properties prepared by a green electrochemical-thermal approach. Nanomaterials 2020, 10, 473. [Google Scholar] [CrossRef] [PubMed]
- So, H.-D.; Jon, S.-H.; Yang, W.-C. Process optimization for electrochemical synthesis of ZnO nanoparticles with respect to productivity and consumption using TOPSIS and Taguchi methods. Sci. Rep. 2025, 15, 16619. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Liu, D.; Pallon, L.K.H.; Andersson, R.L.; Martínez Abad, A.; Lagarón, J.-M.; Hedenqvist, M.S.; Ström, V.; Gedde, U.W.; Olsson, R.T. Water-based synthesis and cleaning methods for high purity ZnO nanoparticles-comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv. 2014, 4, 35568–35577. [Google Scholar] [CrossRef]
- Al-Byati, M.K.A.A.; Al-Duhaidahawi, A.M.J. Synthesis and Characterization of Zinc Oxide Nanoparticles by Electrochemical Method for Environmentally Friendly Dye-Sensitized Solar Cell Applications (DSSCs). Biomed. Chem. Sci. 2023, 2, 53–57. [Google Scholar] [CrossRef]
- Hajos, M.; Starowicz, M.; Brzychczyk, B.; Basista, G.; Francik, S. Size Distribution of Zinc Oxide Nanoparticles Depending on the Temperature of Electrochemical Synthesis. Materials 2025, 18, 458. [Google Scholar] [CrossRef]
- Stypuła, B.; Kmita, A.; Hajos, M. Morphology and Structure of ZnO Nanoparticles Produced by Electrochemical Method; [Zno nanodaleliu{ogonek}, pagamintu{ogonek} taikant elektrochemini{ogonek} metoda{ogonek}, morfologija ir struktūra]. Medziagotyra 2014, 20, 3–9. [Google Scholar] [CrossRef]
- Nagpal, K.; Rauwel, E.; Ducroquet, F.; Gélard, I.; Rauwel, P. Relevance of alcoholic solvents in the growth of ZnO nanoparticles and ZnO hierarchical nanorod structures on their optical and opto-electrical properties. Nanotechnology 2023, 34, 485602. [Google Scholar] [CrossRef] [PubMed]
- Balanov, V.A.; Kiseleva, A.P.; Krivoshapkina, E.F.; Kashtanov, E.A.; Gimaev, R.R.; Zverev, V.I.; Krivoshapkin, P. V Synthesis of (Mn(1−x)Znx)Fe2O4 nanoparticles for magnetocaloric applications. J. Sol-Gel Sci. Technol. 2020, 95, 795–800. [Google Scholar] [CrossRef]
- Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision Support System for the Production of Miscanthus and Willow Briquettes. Energies 2020, 13, 1364. [Google Scholar] [CrossRef]
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 571–581. ISBN 9783319723716. [Google Scholar]
- Francik, S.; Łapczyńska-Kordon, B.; Hajos, M.; Basista, G.; Zawiślak, A.; Francik, R. Modeling the Drying Process of Onion Slices Using Artificial Neural Networks. Energies 2024, 17, 3199. [Google Scholar] [CrossRef]
- Francik, S.; Łapczyńska-Kordon, B.; Pedryc, N.; Szewczyk, W.; Francik, R.; Ślipek, Z. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus. Sustainability 2022, 14, 3062. [Google Scholar] [CrossRef]
- Tryhuba, A.; Hutsol, T.; Čėsna, J.; Tryhuba, I.; Mudryk, K.; Francik, S.; Kukharets, S.; Mishchenko, I.; Oliinyk, R. Optimizing energy systems of livestock farms with computational intelligence for achieving energy autonomy. Sci. Rep. 2025, 15, 10777. [Google Scholar] [CrossRef]
- Vlontzos, G.; Pardalos, P.M. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renew. Sustain. Energy Rev. 2017, 76, 155–162. [Google Scholar] [CrossRef]
- Sharabiani, V.R.; Kaveh, M.; Taghinezhad, E.; Abbaszadeh, R.; Khalife, E.; Szymanek, M.; Dziwulska-Hunek, A. Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Appl. Sci. 2022, 12, 1771. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Mujumdar, A.S. Recent developments of artificial intelligence in drying of fresh food: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275. [Google Scholar] [CrossRef]
- Sanaat, A.; Zaidi, H. Depth of interaction estimation in a preclinical PET scanner equipped with monolithic crystals coupled to SiPMs using a deep neural network. Appl. Sci. 2020, 10, 4753. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D.D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Thai, T.Q.; Bui, H.M. Application of Machine Learning Models for Hot Air Dryer Design in Food Drying Process. J. Food Process. Preserv. 2025, 2025, 5594122. [Google Scholar] [CrossRef]
- Katipoğlu, O.M.; Terzioğlu, Z.Ö.; Zerouali, B. Nature’s Guidance: Employing Bio-inspired Algorithm and Data-Driven Model for Simulating Monthly Maximum and Average Temperature Time Series in the Middle Black Sea Region of Türkiye. Pure Appl. Geophys. 2025, 182, 877–901. [Google Scholar] [CrossRef]
- Huanbutta, K.; Burapapadh, K.; Kraisit, P.; Sriamornsak, P.; Ganokratanaa, T.; Suwanpitak, K.; Sangnim, T. Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Eur. J. Pharm. Sci. 2024, 203, 106938. [Google Scholar] [CrossRef]
- Jeznach, O.; Tabakoglu, S.; Zaszczyńska, A.; Sajkiewicz, P. Review on machine learning application in tissue engineering: What has been done so far? Application areas, challenges, and perspectives. J. Mater. Sci. 2024, 59, 21222–21250. [Google Scholar] [CrossRef]
- Basu, A.; Saha, A.; Banerjee, S.; Roy, P.C.; Kundu, B. A Review of Artificial Intelligence Methods in Predicting Thermophysical Properties of Nanofluids for Heat Transfer Applications. Energies 2024, 17, 1351. [Google Scholar] [CrossRef]
- Ma, M.; Zhai, Y.; Wang, J.; Yao, P.; Wang, H. Statistical image analysis of uniformity of hybrid nanofluids and prediction models of thermophysical parameters based on artificial neural network (ANN). Powder Technol. 2020, 362, 257–266. [Google Scholar] [CrossRef]
- Zhao, N.; Li, Z. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids. Materials 2017, 10, 552. [Google Scholar] [CrossRef]
- Zhu, T.; Mei, X.; Zhang, J.; Li, C. Prediction of Thermal Conductivity of EG–Al2O3 Nanofluids Using Six Supervised Machine Learning Models. Appl. Sci. 2024, 14, 6264. [Google Scholar] [CrossRef]
- Hou, Y.; Qi, J.; Hu, J.; Xiang, Y.; Xin, L.; Wei, X. Mesoporous Mn-Doped Fe Nanoparticle-Modified Reduced Graphene Oxide for Ethyl Violet Elimination: Modeling and Optimization Using Artificial Intelligence. Processes 2020, 8, 488. [Google Scholar] [CrossRef]
- Ruan, W.; Hu, J.; Qi, J.; Hou, Y.; Cao, R.; Wei, X. Removal of Crystal Violet by Using Reduced-Graphene-Oxide-Supported Bimetallic Fe/Ni Nanoparticles (rGO/Fe/Ni): Application of Artificial Intelligence Modeling for the Optimization Process. Materials 2018, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Khatamian, M.; Divband, B.; Jodaei, A. Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater. Chem. Phys. 2012, 134, 31–37. [Google Scholar] [CrossRef]
- Melaibari, A.A.; Khetib, Y.; Alanazi, A.K.; Sajadi, S.M.; Sharifpur, M.; Cheraghian, G. Applying Artificial Neural Network and Response Surface Method to Forecast the Rheological Behavior of Hybrid Nano-Antifreeze Containing Graphene Oxide and Copper Oxide Nanomaterials. Sustainability 2021, 13, 1505. [Google Scholar] [CrossRef]
- Boateng, D.; Chu, K.; Smith, Z.J.; Du, J.; Dai, Y. Deep learning-based size prediction for optical trapped nanoparticles and extracellular vesicles from limited bandwidth camera detection. Biomed. Opt. Express 2024, 15, 1–13. [Google Scholar] [CrossRef]
- Smeraldo, A.; Ponsiglione, A.M.; Netti, P.A.; Torino, E. Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging. Acta Biomater. 2023, 171, 440–450. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Hu, Y. Zinc oxide nanoparticle-reinforced sodium alginate/ hydroxyapatite scaffolds for osteoporosis treatment in fragility fracture patients: Development and characterization using artificial neural networks (ANNs) modeling. Iran. J. Basic Med. Sci. 2024, 27, 1592–1603. [Google Scholar] [CrossRef]
- Vaferi, B.; Dehbashi, M.; Alibak, A.H. Cutting-Edge Machine Learning Techniques for Accurate Prediction of Agglomeration Size in Water–Alumina Nanofluids. Symmetry 2024, 16, 804. [Google Scholar] [CrossRef]
- Ragone, M.; Yurkiv, V.; Song, B.; Ramsubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Atomic column heights detection in metallic nanoparticles using deep convolutional learning. Comput. Mater. Sci. 2020, 180, 109722. [Google Scholar] [CrossRef]
- Fages, T.; Jolibois, F.; Poteau, R. Recognition of the three-dimensional structure of small metal nanoparticles by a supervised artificial neural network. Theor. Chem. Acc. 2021, 140, 98. [Google Scholar] [CrossRef]
- Zelenka, C.; Kamp, M.; Strohm, K.; Kadoura, A.; Johny, J.; Koch, R.; Kienle, L. Automated classification of nanoparticles with various ultrastructures and sizes via deep learning. Ultramicroscopy 2023, 246, 113685. [Google Scholar] [CrossRef]
- Ijaz, S.; Sultana, M.; Shamim, R.; Bukhari, N.I. Development and DoE-ANN based optimization of novel swellable matrix-diffusible doxorubicin loaded zinc oxide nanoflowers using sonochemical-precipitation method. Int. J. Pharm. 2023, 633, 122584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; He, H.; Yang, S.; Wang, Y.; Hu, J.; Jin, H.; Cui, T.; Yang, G.; Sun, Y. A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method. Energies 2021, 14, 5916. [Google Scholar] [CrossRef]
- Muneer, R.; Hashmet, M.R.; Pourafshary, P.; Shakeel, M. Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. Nanomaterials 2023, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
Function Name | Function Pattern | y Range |
---|---|---|
logistic | ||
hyperbolic tangent | ||
exponential |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francik, S.; Hajos, M.; Brzychczyk, B.; Styks, J.; Francik, R.; Ślipek, Z. Modeling the Electrochemical Synthesis of Zinc Oxide Nanoparticles Using Artificial Neural Networks. Materials 2025, 18, 4187. https://doi.org/10.3390/ma18174187
Francik S, Hajos M, Brzychczyk B, Styks J, Francik R, Ślipek Z. Modeling the Electrochemical Synthesis of Zinc Oxide Nanoparticles Using Artificial Neural Networks. Materials. 2025; 18(17):4187. https://doi.org/10.3390/ma18174187
Chicago/Turabian StyleFrancik, Sławomir, Michał Hajos, Beata Brzychczyk, Jakub Styks, Renata Francik, and Zbigniew Ślipek. 2025. "Modeling the Electrochemical Synthesis of Zinc Oxide Nanoparticles Using Artificial Neural Networks" Materials 18, no. 17: 4187. https://doi.org/10.3390/ma18174187
APA StyleFrancik, S., Hajos, M., Brzychczyk, B., Styks, J., Francik, R., & Ślipek, Z. (2025). Modeling the Electrochemical Synthesis of Zinc Oxide Nanoparticles Using Artificial Neural Networks. Materials, 18(17), 4187. https://doi.org/10.3390/ma18174187