The Influence of the Internal Design and Layer Thickness on the Accuracy of 3D-Printed Dental Models
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, G.; Shin, S.H.; Shim, J.S.; Lee, K.W.; Kim, J.E. Accuracy of 3D printed models and implant-analog positions according to the implant-analog-holder offset, inner structure, and printing layer thickness: An in-vitro study. J. Dent. 2022, 125, 104268. [Google Scholar] [CrossRef]
- Patzelt, S.B.M.; Bishti, S.; Stampf, S.; Att, W. Accuracy of computer aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data. J. Am. Dent. Assoc. 2014, 145, 1133–1140. [Google Scholar] [CrossRef]
- Rungrojwittayakul, O.; Kan, J.Y.; Shiozaki, K.; Swamidass, R.S.; Goodacre, B.J.; Goodacre, C.J.; Lozada, J.M. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J. Prosthodont. 2020, 29, 124–128. [Google Scholar] [CrossRef]
- Michelinakis, G.; Apostolakis, D.; Tsagarakis, A.; Kourakis, G.; Pavlakis, E. A comparison of accuracy of 3 intraoral scanners: A single-blinded in vitro study. J. Prosthet. Dent. 2020, 124, 581–588. [Google Scholar] [CrossRef]
- Zarean, P.; Zarean, P.; Sendi, P.; Neuhaus, K.W. Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Appl. Sci. 2023, 13, 6998. [Google Scholar] [CrossRef]
- Paris, H.; Mokhtarian, H.; Coatanéa, E.; Museau, M.; Ituarte, I.F. Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Ann. 2016, 65, 29–32. [Google Scholar] [CrossRef]
- Moon, J.M.; Jeong, C.S.; Lee, H.J.; Bae, J.M.; Choi, E.J.; Kim, S.T.; Park, Y.B.; Oh, S.H. A Comparative Study of Additive and Subtractive Manufacturing Techniques for a Zirconia Dental Product: An Analysis of the Manufacturing Accuracy and the Bond Strength of Porcelain to Zirconia. Materials 2022, 15, 5398. [Google Scholar] [CrossRef] [PubMed]
- Jayawardane, H.; Davies, I.J.; Gamage, J.R.; John, M.; Biswas, W.K. Sustainability perspectives—A review of additive and subtractive manufacturing. Sustain. Manuf. Serv. Econ. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Rasheed, R.K.; Mansoor, N.S.; Mohammed, N.H.; Qasim, S.S.B. Subtractive and Additive Technologies in Fixed Dental Restoration: A Systematic Review. J. Tech. 2023, 5, 162–167. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Lee, W.S.; Lee, K.B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018, 10, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Andjela, L.; Abdurahmanovich, V.M.; Vladimirovna, S.N.; Mikhailovna, S.I.; Yurievich, D.D.; Alekseevna, M.Y. A review on Vat Photopolymerization 3D-printing processes for dental application. Dent. Mater. 2022, 38, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Caussin, E.; Moussally, C.; Goff, S.L.; Fasham, T.; Troizier-Cheyne, M.; Tapie, L.; Dursun, E.; Attal, J.P.; François, P. Vat Photo-polymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies. Materials 2024, 17, 950. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology 2020, 108, 331–338. [Google Scholar] [CrossRef]
- Kim, J.H.; Pinhata-Baptista, O.H.; Ayres, A.P.; Silva, R.L.B.; Lima, J.F.; Urbanoo, G.S.; No-Cortes, J.; Vasques, M.T.; Cortes, A.R.G. Accuracy Comparison among 3D-Printing Technologies to Produce Dental Models. Appl. Sci. 2022, 12, 8425. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Choi, J.W.; Ahn, J.J.; Son, K.; Huh, J.B. Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models. Materials 2019, 12, 3499. [Google Scholar] [CrossRef]
- Kardach, H.; Szponar-Zurowska, A.; Biedziak, B. A Comparison of Teeth Measurements on Plaster and Digital Models. J. Clin. Med. 2023, 12, 943. [Google Scholar] [CrossRef]
- Shin, S.H.; Lim, J.H.; Kang, Y.J.; Kim, J.H.; Shim, J.S.; Kim, J.E. Evaluation of the 3D printing accuracy of a dental model according to its internal structure and cross-arch plate design: An in vitro study. Materials 2020, 13, 5433. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Kwon, J.S.; Shim, J.S.; Kim, J.E. Evaluating the three-dimensional printing accuracy of partial-arch models according to outer wall thickness: An in vitro study. Materials 2021, 14, 6734. [Google Scholar] [CrossRef]
- Sherman, S.L.; Kadioglu, O.; Currier, G.F.; Kierl, J.P.; Li, J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 422–428. [Google Scholar] [CrossRef]
- Jin, M.C.; Yoon, H.I.; Yeom, I.S.; Kim, S.H.; Han, J.S. The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing. J. Prosthet. Dent. 2020, 123, 473–482. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef] [PubMed]
- Ellakany, P.; Al-Harbi, F.; Tantawi, M.E.I.; Mohsen, C. Evaluation of the accuracy of digital and 3D-printed casts compared with conventional stone casts. J. Prosthet. Dent. 2022, 127, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.N.W.; Yusoff, Y.; Mardi, N.A. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am. J. Orthod. Dentofac. Orthop. 2022, 151, 209–218. [Google Scholar] [CrossRef]
- Arnold, C.; Rib, L.; Hey, J.; Schweyen, R. Dimensional Accuracy of Different Three-Dimensional Printing Models as a Function of Varying the Printing Parameters. Materials 2024, 17, 3616. [Google Scholar] [CrossRef] [PubMed]
- Maeng, J.; Lim, Y.J.; Kim, B.; Kim, M.J.; Kwon, H.B. A New Approach to Accuracy Evaluation of Single-Tooth Abutment Using Two-Dimensional Analysis in Two Intraoral Scanners. Int. J. Environ. Res. Public Health 2019, 16, 1021. [Google Scholar] [CrossRef]
- An, H.; Langas, E.E.; Gill, A.S. Effect of scanning speed, scanning pattern, and tip size on the accuracy of intraoral digital scans. J. Prosthet. Dent. 2024, 131, 1160–1167. [Google Scholar] [CrossRef]
- Park, M.E.; Shin, S.Y. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J. Prosthet. Dent. 2018, 119, 861.e1–861.e7. [Google Scholar] [CrossRef]
- Hazeveld, A.; Slater, J.J.; Ren, Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid proto-typing techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef]
- Brown, G.B.; Currier, G.F.; Kadioglu, O.; Kierl, J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Papaioannou, W.; Papadopoulou, E.; Dalampira, M.; Tsolakis, A.I. Comparison in terms of accuracy between DLP and LCD printing technology for dental model printing. Dent. J. 2022, 10, 181. [Google Scholar] [CrossRef]
- Curinga, M.R.S.; Sousa, L.C.; Pereira, A.L.C.; Melo-Segundo, H.V.; Dantas, L.M.C.M.; Carreiro, A.D.F.P. Accuracy of models of partially edentulous arches obtained by three-dimensional printing: An in vitro study. J. Indian Prosthodont. Soc. 2023, 23, 356–362. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Liang, Y.M.; Rutchakitprakarn, L.; Kuang, S.H.; Wu, T.Y. Comparing the reliability and accuracy of clinical measurements using plaster model and the digital model system based on crowding severity. J. Chin. Med. Assoc. 2018, 81, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.A.; Ender, A.; Baumgartner, S.; Mehl, A. A validation study of reconstructed rapid prototyping models produced by two technologies. Angle Orthod. 2017, 87, 782–787. [Google Scholar] [CrossRef]
- Aly, P.; Mohsen, C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020, 14, 189–193. [Google Scholar] [CrossRef]
- Czarnota, J.; Hey, J.; Fuhrmann, R. Measurements using orthodontic analysis software on digital models obtained by 3D scans of plaster casts: Intrarater reliability and validity. J. Orofac. Orthop. 2016, 77, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Keating, A.P.; Knox, J.; Bibb, R.; Zhurov, A.I. A comparison of plaster, digital and reconstructed study model accuracy. J. Orthod. 2008, 35, 191–201. [Google Scholar] [CrossRef]
Source | Sum of Squares | Df | Mean Square | F | p |
---|---|---|---|---|---|
Corrected model | 3.446 a | 11 | 0.313 | 7.409 | <0.001 |
Intercept | 47.968 | 1 | 47.968 | 1134.448 | <0.001 |
Internal design | 2.418 | 5 | 0.484 | 11.438 | <0.001 |
Layer thickness | 0.003 | 1 | 0.003 | 0.081 | 0.776 |
Internal design * Layer thickness | 1.024 | 5 | 0.205 | 4.845 | <0.001 |
Error | 24.770 | 948 | 0.026 | ||
Total | 69.230 | 960 | |||
Corrected total | 29.249 | 959 |
Measurement Point | Layer Thickness | ICC (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|
Stone | O1 | O3 | OF | C1 | C3 | CF | ||
MD | 50 | 0.998 (0.997–0.999) | 0.996 (0.993–0.998) | 0.999 (0.997–0.999) | 0.997 (0.995–0.999) | 0.998 (0.996–0.999) | 0.998 (0.997–0.999) | 0.998 (0.996–0.999) |
100 | 0.995 (0.991–0.998) | 0.998 (0.995–0.999) | 0.997 (0.994–0.998) | 0.995 (0.991–0.998) | 0.998 (0.994–0.999) | 0.998 (0.995–0.999) | ||
OC | 50 | 0.999 (0.998–1.000) | 0.999 (0.998–0.999) | 0.999 (0.999–1.000) | 0.999 (0.999–1.000) | 0.999 (0.999–1.000) | 0.999 (0.996–1.000) | 0.999 (0.998–0.999) |
100 | 0.998 (0.997–0.999) | 0.999 (0.997–1.000) | 0.999 (0.998–0.999) | 0.998 (0.997–0.999) | 0.999 (0.999–1.000) | 0.999 (0.998–0.999) | ||
ICW | 50 | 0.885 (0.158–0.990) | 0.774 (0.233–0.968) | 0.770 (0.319–0.982) | 0.880 (0.469–0.986) | 0.939 (0.397–0.993) | 0.772 (0.372–0.990) | 0.891 (0.446–0.988) |
100 | 0.794 (0.390–0.953) | 0.861 (0.474–0.992) | 0.797 (0.185–0.976) | 0.796 (0.124–0.976) | 0.835 (0.240–0.951) | 0.794 (0.140–0.978) | ||
IMW | 50 | 0.806 (0.149–0.979) | 0.795 (0.435–0.944) | 0.890 (0.331–0.770) | 0.990 (0.418–0.942) | 0.789 (0.034–0.964) | 0.792 (0.315–0.937) | 0.909 (0.604–0.990) |
100 | 0.854 (0.589–0.960) | 0.793 (0.311–0.973) | 0.819 (0.261–0.979) | 0.770 (0.096–0.973) | 0.865 (0.349–0.884) | 0.826 (0.055–0.981) |
Measurement Point | Layer Thickness | Groups, Mean Difference (SD) | |||||||
---|---|---|---|---|---|---|---|---|---|
Stone | O1 | O3 | OF | C1 | C3 | CF | p-Value | ||
MD | 50 | 0.12 a (0.04) | 0.19 b (0.13) | 0.15 c (0.19) | 0.11 d (0.07) | 0.20 de (0.15) | 0.13 f (0.09) | 0.07 be (0.07) | <0.001 |
100 | 0.12 a (0.04) | 0.13 b (0.12) | 0.18 cd (0.07) | 0.09 ce (0.06) | 0.17 ef (0.12) | 0.13 g (0.06) | 0.07 df (0.06) | <0.001 | |
p | 0.074 | 0.476 | 0.238 | 0.425 | 0.846 | 0.801 | |||
OC | 50 | 0.13 abcd (0.13) | 0.19 e (0.10) | 0.26 a (0.11) | 0.19 f (0.10) | 0.29 be (0.17) | 0.27 c (0.12) | 0.24 d (0.13) | <0.001 |
100 | 0.13 ab (0.13) | 0.19 c (0.16) | 0.24 a (0.14) | 0.17 d (0.10) | 0.24 b (0.11) | 0.16 e (0.08) | 0.18 f (0.10) | 0.003 | |
p | 0.867 | 0.401 | 0.439 | 0.254 | <0.001 | 0.069 | |||
ICW | 50 | 0.21 a (0.06) | 0.16 b (0.10) | 0.37 cd (0.02) | 0.17 e (0.13) | 0.53 befg (0.24) | 0.02 acf (0.01) | 0.14 dg (0.12) | <0.001 |
100 | 0.21 a (0.06) | 0.21 b (0.16) | 0.47 abcde (0.03) | 0.15 c (0.11) | 0.23 d (0.12) | 0.27 f (0.01) | 0.09 ef (0.06) | <0.001 | |
p | 0.440 | <0.001 | 0.912 | 0.002 | <0.001 | 0.230 | |||
IMW | 50 | 0.51 a (0.12) | 0.23 b (0.16) | 0.78 bcde (0.02) | 0.17 c (0.09) | 0.52 f (0.17) | 0.04 adf (0.02) | 0.19 e (0.13) | <0.001 |
100 | 0.51 ab (0.12) | 0.60 cde (0.28) | 0.85 fghi (0.02) | 0.16 cf (0.12) | 0.32 g (0.18) | 0.09 adh (0.02) | 0.15 bei (0.13) | <0.001 | |
p | 0.002 | <0.001 | 0.876 | 0.022 | <0.001 | 0.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-H.; Choi, J.-W. The Influence of the Internal Design and Layer Thickness on the Accuracy of 3D-Printed Dental Models. Materials 2025, 18, 4173. https://doi.org/10.3390/ma18174173
Ahn J-H, Choi J-W. The Influence of the Internal Design and Layer Thickness on the Accuracy of 3D-Printed Dental Models. Materials. 2025; 18(17):4173. https://doi.org/10.3390/ma18174173
Chicago/Turabian StyleAhn, Jong-Hak, and Jae-Won Choi. 2025. "The Influence of the Internal Design and Layer Thickness on the Accuracy of 3D-Printed Dental Models" Materials 18, no. 17: 4173. https://doi.org/10.3390/ma18174173
APA StyleAhn, J.-H., & Choi, J.-W. (2025). The Influence of the Internal Design and Layer Thickness on the Accuracy of 3D-Printed Dental Models. Materials, 18(17), 4173. https://doi.org/10.3390/ma18174173