Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment
Abstract
1. Introduction
2. Experimental Program
2.1. Materials and Specimens
2.2. Water Absorption Test
2.3. Mechanical Test
2.4. Microstructural Analysis
3. Results
3.1. Surface Appearance Observation
3.2. Water Absorption Results
3.3. Degradation of Mechanical Properties
3.3.1. Tensile Strength Retention
3.3.2. Flexural Strength Retention
3.3.3. Interlaminar Shear Strength Retention
3.4. Microstructure Observation
3.4.1. DSC
3.4.2. FTIR
3.4.3. SEM
4. Degradation Mechanism
5. Conclusions
- (1)
- The mechanical performance of BFRP deteriorates markedly under high temperature and strongly alkaline conditions. After exposure at pH 13 and 60 °C for 90 days, the retained tensile, flexural, and interlaminar shear strengths decrease by up to approximately 72%, 88%, and 77%, respectively, whereas the elastic moduli exhibit comparatively minor changes, indicating that strength is more sensitive to environmental degradation.
- (2)
- Microscale characterization (SEM, DSC, and FTIR) clarifies BFRP’s alkaline degradation: SEM shows matrix cracking, fiber erosion, and interfacial debonding; FTIR detects resin ester/ether hydrolysis, but an abnormal C-OH/C-H drop implies product leaching only at the interface (via silane coupling agents); DSC’s stability rules out bulk matrix degradation. Together, they confirm resin chemical changes are interface-confined.
- (3)
- Degradation of BFRP in alkaline media is governed by fiber corrosion, resin hydrolysis, and fiber-matrix interfacial debonding. Hydroxide ions attack Si–O–Si linkages in the fibers and ester groups in the matrix, thereby weakening both phases. Interfacial damage is further exacerbated by silane hydrolysis and crack initiation, with elevated temperature accelerating these processes. The resulting synergistic degradation promotes stress concentration and progressive failure. Notably, the glass transition temperature ( ) of the resin matrix remains essentially unchanged, indicating that the bulk thermal stability of the epoxy network is preserved despite localized chemical and structural deterioration.
- (4)
- In view of the identified degradation mechanisms and performance losses under combined alkaline and thermal exposure, the use of BFRP rebars is recommended in environments of mild alkalinity (pH ≤ 12) and service temperatures below 60 °C. Within these bounds, mechanical properties and thermal stability remain comparatively stable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Ji, Y. Modeling corroded section configuration of steel bar in concrete structure. Constr. Build. Mater. 2009, 23, 2461–2466. [Google Scholar] [CrossRef]
- Dai, Z.; Zhou, S.; Yin, Y.; Fu, X.; Zhang, Y.; Guo, J.; Du, Z.; Tao, Y.; Wu, X. Experimental study on the mechanical properties and failure modes of BFRP bar anchor systems under static tension loading. Front. Earth Sci. 2023, 11, 1106920. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Athiyah, S.F.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI). Guide for the Design and Construction of Concrete Reinforced with FRP Bars; ACI 440.1R-03; ACI: Farmington Hills, MI, USA, 2003. [Google Scholar]
- Dong, Z.; Wu, G.; Zhu, H.; Zhao, X.-L.; Wei, Y.; Qian, H. Flexural behavior of seawater sea-sand coral concrete–UHPC composite beams reinforced with BFRP bars. Constr. Build. Mater. 2020, 265, 120279. [Google Scholar] [CrossRef]
- Lee, J.J.; Song, J.; Kim, H. Chemical stability of basalt fiber in alkaline solution. Fibers Polym. 2014, 15, 2329–2334. [Google Scholar] [CrossRef]
- Liu, M.; Guo, Z.; Qian, Y.; Chen, L.; Mao, X.; Zhao, J.; Yang, D. Investigation into the long-term alkali resistance of basalt fibers. J. Build. Eng. 2024, 98, 111105. [Google Scholar] [CrossRef]
- Wang, J.; GangaRao, H.; Liang, R.; Liu, W. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review. J. Reinf. Plast. Compos. 2015, 35, 179–211. [Google Scholar] [CrossRef]
- Rolland, A.; Benzarti, K.; Quiertant, M.; Chataigner, S. Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete. Materials 2021, 14, 5700. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.O.; da Silva Forti, N.C.; Cardoso, D.C.T.; dos Santos, N.V.; Pimentel, L.L.; de Avila Jacintho, A.E.P.G. Hydrothermal aging of polyester-based GFRP bars in alkaline environment. Mater. Struct. 2025, 58, 106. [Google Scholar] [CrossRef]
- Sunny, J.; Palacios Moreno, J.; Nazaripoor, H.; Mertiny, P. Hydrothermal Aging and Humidity Exposure of Carbon and Basalt Fibers and Life Time Prediction. Fibers 2024, 12, 58. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Xian, G.; Li, C. Effect of Immersion in Water or Alkali Solution on the Structures and Properties of Epoxy Resin. Polymers 2021, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.J.; Yang, T.; Xiao, X.; Zhu, X.Y.; Wang, J.; Zang, P.Y.; Liu, J.A.; Song, P. Mechanical Properties of the Epoxy Resin Composites Modified by Nanofiller under Different Aging Conditions. J. Nanomater. 2022, 2022, 6358713. [Google Scholar] [CrossRef]
- Förster, T.; Scheffler, C.; Mäder, E.; Heinrich, G.; Jesson, D.A.; Watts, J.F. Dissolution behaviour of model basalt fibres studied by surface analysis methods. Appl. Surf. Sci. 2014, 322, 78–84. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Xie, Q. Degradation of basalt FRP bars in alkaline environment. Sci. Eng. Compos. Mater. 2015, 22, 649–657. [Google Scholar] [CrossRef]
- Wang, P.; Ke, L.-y.-w.; Wu, H.-l.; Leung, C.K.Y. Lowering exposure pH for durability enhancement of glass fiber reinforcement polymer (GFRP) rebars. Constr. Build. Mater. 2022, 354, 129131. [Google Scholar] [CrossRef]
- Wang, P.; Ke, L.; Sze, A.N.S.; Wang, Z.; Zhao, J.; Li, W.; Leung, C.K.Y. Effects of relative humidity, alkaline concentration and temperature on the degradation of plain/coated glass fibers: Experimental investigation and empirical degradation model. Constr. Build. Mater. 2023, 391, 131757. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.-L.; Ke, L.-y.-w.; Leung, C.K.Y. Mechanical and long-term durability prediction of GFRP rebars with the adoption of low-pH CSA concrete. Constr. Build. Mater. 2022, 346, 128444. [Google Scholar] [CrossRef]
- Fergani, H.; Di Benedetti, M.; Miàs Oller, C.; Lynsdale, C.; Guadagnini, M. Durability and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress. Constr. Build. Mater. 2018, 170, 637–648. [Google Scholar] [CrossRef]
- Altalmas, A.; El Refai, A.; Abed, F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions. Constr. Build. Mater. 2015, 81, 162–171. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S.; Haque, A. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489. [Google Scholar] [CrossRef]
- Chen, L.; Liang, K.; Su, R.K.L.; Huang, Z. Effects of pH value and temperature in pore solution of carbonated SCM concrete on creep rupture performance of BFRP bars. Constr. Build. Mater. 2024, 455, 139160. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.-L.; Ke, L.-Y.-W.; Li, W.-W.; Leung, C.K.Y. Mechanical properties and microstructure of glass fiber reinforced polymer (GFRP) rebars embedded in carbonated reactive MgO-based concrete (RMC). Cem. Concr. Compos. 2023, 142, 105207. [Google Scholar] [CrossRef]
- Wang, P.; Lai, H.-Y.; Li, W.-Y.; Ke, L.-Y.-W.; Wu, H.-L.; Li, W.-W.; Leung, C.K.Y. Mechanical properties and environmental impact assessments of GFRP rebar reinforced limestone calcinated clay cement (LC3) concrete. Constr. Build. Mater. 2025, 472, 140788. [Google Scholar] [CrossRef]
- Lu, Z.; Su, L.; Xian, G.; Lu, B.; Xie, J. Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment. Compos. Struct. 2020, 234, 111650. [Google Scholar] [CrossRef]
- Wang, T.; Razaqpur, A.G.; Chen, S. Durability of GFRP and BFRP reinforcing bars in simulated seawater sea sand calcium sulfoaluminate cement concrete pore solution. J. Build. Eng. 2023, 80, 107954. [Google Scholar] [CrossRef]
- ASTM D7205/D7205M-06; Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM D4476/D4476M-14; Standard Test Method for Flexural Properties of Fiber Reinforced Pultruded Plastic Rods. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D4475-02; Standard Test Method for Apparent Horizontal Shear Strength of Pultruded Reinforced Plastic Rods by the Short-Beam Method. ASTM International: West Conshohocken, PA, USA, 2021.
- Wang, P.; Ke, L.-Y.-W.; Wu, H.-L.; Leung, C.K.Y. Hygrothermal aging effect on the water diffusion in glass fiber reinforced polymer (GFRP) composite: Experimental study and numerical simulation. Compos. Sci. Technol. 2022, 230, 109762. [Google Scholar] [CrossRef]
- Lightfoot, R.B.; Stewart, W.E. Transport Phenomena, 2nd ed; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Sun, Y.; Jin, Z.; Zhang, X.; Zhu, D. Experimental and molecular dynamics study on the deterioration mechanism of GFRP bars in distilled water and salt solution environments. J. Build. Eng. 2022, 60, 105224. [Google Scholar] [CrossRef]
- Hill, D.J.T.; George, G.A.; Rogers, D.G. A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems. Polym. Adv. Technol. 2002, 13, 353–362. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A.; Louro, C. Effects of alkaline and acid solutions on glass/epoxy composites. Polym. Degrad. Stab. 2013, 98, 853–862. [Google Scholar] [CrossRef]
- Rifai, M.A.; El-Hassan, H.; El-Maaddawy, T.; Abed, F. Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments. Constr. Build. Mater. 2020, 243, 118258. [Google Scholar] [CrossRef]
- Shen, M.; Almallahi, R.; Rizvi, Z.; Gonzalez-Martinez, E.; Yang, G.; Robertson, M.L. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins. Polym. Chem. 2019, 10, 3217–3229. [Google Scholar] [CrossRef]
- Kim, S.; Hong, H.; Park, J.K.; Park, S.; Choi, S.I.; Kim, M.O. Effect of Exposure Conditions on the Interfacial Bond Properties of SS400 Plate Coated with Various Epoxy Resins. Coatings 2020, 10, 1159. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Rao, B.; Dai, H.; Gao, L.; Xie, H.; Gao, G.; Peng, K.; Zhang, M.; He, F.; Pan, Y. Surprisingly highly reactive silica that dissolves rapidly in dilute alkali (NaOH) solution even at ambient temperatures (25 °C). J. Clean. Prod. 2022, 341, 130779. [Google Scholar] [CrossRef]
- Gillet, C.; Tamssaouet, F.; Hassoune-Rhabbour, B.; Tchalla, T.; Nassiet, V. Parameters Influencing Moisture Diffusion in Epoxy-Based Materials during Hygrothermal Ageing-A Review by Statistical Analysis. Polymers 2022, 14, 2832. [Google Scholar] [CrossRef]
- Li, M.; Xing, D.; Zheng, Q.-B.; Li, H.; Hao, B.; Ma, P.-C. Variation on the morphology and tensile strength of basalt fiber processed in alkali solutions. Constr. Build. Mater. 2022, 335, 127512. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Y.; Randl, N. Investigation on the alkali resistance of basalt fiber and its textile in different alkaline environments. Constr. Build. Mater. 2021, 272, 121670. [Google Scholar] [CrossRef]
- Yi, Y.; Guo, S.; Li, S.; Zillur Rahman, M.; Zhou, L.; Shi, C.; Zhu, D. Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment. Constr. Build. Mater. 2021, 299, 123957. [Google Scholar] [CrossRef]
Item | Value | Code | Reference |
---|---|---|---|
Nominal radius, (mm) | 6 0.1 | ATSM D7205 | [27] |
Tensile strength, (MPa) | 771 61.7 | ATSM D7205 | [27] |
Flexural strength, (MPa) | 1071.8 117.9 | ASTM D4476M-14 | [28] |
Interlaminar shear strength, (MPa) | 17.9 3.2 | ASTM D4475-02 | [29] |
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO2 | Na2O | K2O | TiO2 | P2O5 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 51.506 | 16.963 | 11.871 | 8.386 | 5.175 | 2.628 | 1.846 | 1.258 | 0.226 | 0.141 |
Solution | Diffusion Coefficient (10−7 mm2/s) | ||
---|---|---|---|
23 °C | 40 °C | 60 °C | |
pH = 7 | 5.876 | 6.758 | 7.849 |
pH = 11 | 6.815 | 7.352 | 7.789 |
pH = 12 | 6.758 | 7.093 | 7.547 |
pH = 13 | 7.071 | 7.277 | / |
ID | O-H/C-H | C=O/C-H | C-O-C/C-H | C-OH/C-H | ||||
---|---|---|---|---|---|---|---|---|
Value | Ratio | Value | Ratio | Value | Ratio | Value | Ratio | |
Control | 0.208 | - | 2.507 | - | 4.364 | - | 4.979 | - |
pH 7-60 °C-12 m | 0.22 | +5.77% | 2.32 | −7.46% | 3.521 | −19.30% | 3.567 | −28.40% |
pH 11-60 °C-12 m | 0.346 | +66.30% | 2.1 | −16.20% | 3.331 | −23.70% | 3.485 | −30.00% |
pH 12-60 °C-12 m | 0.368 | +76.90% | 1.856 | −26.00% | 2.946 | −32.50% | 3.067 | −38.40% |
pH 13-60 °C-12 m | 1.015 | +388% | 0.743 | −70.40% | 2.173 | −50.20% | 2.75 | −44.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zou, M.; He, M.; Li, W.; Wang, P.; Tang, Y. Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment. Materials 2025, 18, 4170. https://doi.org/10.3390/ma18174170
Li W, Zou M, He M, Li W, Wang P, Tang Y. Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment. Materials. 2025; 18(17):4170. https://doi.org/10.3390/ma18174170
Chicago/Turabian StyleLi, Weiwen, Murong Zou, Meilin He, Wanye Li, Peng Wang, and Yihong Tang. 2025. "Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment" Materials 18, no. 17: 4170. https://doi.org/10.3390/ma18174170
APA StyleLi, W., Zou, M., He, M., Li, W., Wang, P., & Tang, Y. (2025). Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment. Materials, 18(17), 4170. https://doi.org/10.3390/ma18174170