Agrifood Waste Valorization: Development of Biochar from Peach Kernel or Grape Pits for Cr6+ Removal from Plating Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Adsorbents
2.3. Sample Characterization
2.4. Batch Experiments
2.5. Stability Tests and Reusability
3. Results
3.1. Characterization of Biochars
3.1.1. Thermogravimetric Analysis of Adsorbent Materials
3.1.2. Fourier Transform Infrared Spectroscopy
3.1.3. SEM and EDX Analysis
3.1.4. Morphology Analysis and Specific Surface Area
3.1.5. pH of Point of Zero Charge (pHPZC)
3.2. Batch Adsorption Tests
3.2.1. Effect of m/V Ratio
3.2.2. Effect of Contact Time
3.2.3. Effect of Temperature
3.2.4. Effect of pH
3.2.5. Adsorption and Kinetic Models
Theoretical Backgrounds—Adsorption Models
Langmuir Isotherm
Freundlich Isotherm
Sips Isotherm
Temkin Isotherm
Theoretical Backgrounds—Kinetic Models
Pseudo-First-Order Model
Pseudo-Second-Order Model
Elovich Model
3.2.6. Thermodynamic Study
4. Discussion
5. Regeneration and Reusability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palumbo, M.; Carbone, V.; Ricci, I.; Pace, B.; Cefola, M.; Minasi, P.; Garofalo, S.P.; Camposeo, S.; Tallou, A.; Vivaldi, G.A. Qualitative and biochemical characteristics of pomegranate fruit grown using reclaimed water and low input fertigation treatments at harvest and during storage. Heliyon 2024, 10, e34430. [Google Scholar] [CrossRef]
- Sifi, S.; Aydi, A.; Zaghdoudi, S.; Gasmi, M.; Abdo, H.G. Geospatial technique and multi-criteria evaluation to select suitable sites for groundwater recharge with reclaimed water in arid and semi-arid regions. Water Cycle 2025, 6, 213–228. [Google Scholar] [CrossRef]
- Dogan, S.; Azarm, S.A.S. Cost analysis and site selection for reclaimed water injection to enhance coastal aquifer sustainability. J. Water Process Eng. 2024, 68, 106551. [Google Scholar] [CrossRef]
- Recycled Water for Drinking: An Overview 2024. Available online: https://www.cdc.gov/drinking-water/about/recycled-water-for-drinking-an-overview.html (accessed on 5 May 2025).
- WHO. Environmental Health Criteria 61: Chromium. Available online: https://iris.who.int/bitstream/handle/10665/40419/9241542616-eng.pdf?sequence=1&isAllowed=y (accessed on 5 May 2025).
- Bratovcic, A.; Buksek, H.; Helix-Nielsen, C.; Petrinic, I. Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solution. Chem. Eng. J. 2022, 431, 133918. [Google Scholar] [CrossRef]
- Jimenez-Paz, J.; Lozada-Castro, J.J.; Lester, E.; Wiliams, O.; Stevens, L.; Barraza-Burgos, J. Solutions to hazardous wastes issues in the leather industry: Adsorption of Chromium iii and vi from leather industry wastewaters using activated carbons produced from leather industry solid wastes. J. Environ. Chem. Eng. 2023, 11, 109715. [Google Scholar] [CrossRef]
- Singha, K.; Pandit, P.; Maity, S.; Sharma, S.R. Harmful environmental effects for textile chemical dyeing practice. In Green Chemistry for Sustainable Textiles; Woodhead Publishing: Amsterdam, The Netherlands, 2021; pp. 153–164. [Google Scholar]
- Rawat, A.; Srivastava, A.; Bhatnagar, A.; Gupta, A.K. Technological advancements for the treatment of steel industry wastewater: Effluent management and sustainable treatment strategies. J. Clean. Prod. 2023, 383, 135382. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef] [PubMed]
- Hackbarth, F.V.; Maass, D.; de Souza, A.A.U.; Vilar, V.J.P.; de Souza, S.M.A.G.U. Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem. Eng. J. 2016, 290, 477–489. [Google Scholar] [CrossRef]
- Santis, A.; Arbeláez, O.; Cardenas, L.A.; Castellanos, J.; Velasquez, P. Optimizing Cr(VI) Reduction in Plastic Chromium Plating Wastewater: Particle Size, Irradiation, Titanium Dose. Emerg. Sci. J. 2024, 8, 17–27. [Google Scholar] [CrossRef]
- Erkabaev, F.; Muhammadieva, D.; Rabbimkulova, S. Composition and properties of industrial wastewater and its electrochemical treatment. E3S Web Conf. 2024, 563, 01002. [Google Scholar] [CrossRef]
- Kobya, M.; Erdem, N.; Demirbas, E. Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes. Desalination Water Treat. 2015, 56, 1191–1201. [Google Scholar] [CrossRef]
- Rodríguez, R.; Espada, J.J.; Gallardo, M.; Molina, R.; Lopez-Munoz, M.J. Life cycle assessment and techno-economic evaluation of alternatives for the treatment of wastewater in a chrome-plating industry. J. Clean. Prod. 2018, 172, 2351–2362. [Google Scholar] [CrossRef]
- EPA. Chromium in Drinking Water. Available online: https://www.epa.gov/sdwa/chromium-drinking-water#what-are-regs (accessed on 5 May 2025).
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/eli/dir/1998/83/oj/eng (accessed on 5 May 2025).
- WHO. Chromium in Drinking-Water 2003. Available online: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/chromium.pdf?sfvrsn=37abd598_6 (accessed on 5 May 2025).
- ECHA. Proposes Restrictions on Chromium (VI) Substances to Protect Health. Available online: https://echa.europa.eu/-/echa-proposes-restrictions-on-chromium-vi-substances-to-protect-health (accessed on 5 May 2025).
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [PubMed]
- Kerur, S.S.; Bandekar, S.; Hanagadakar, M.S.; Nandi, S.S.; Ratnamala, G.M.; Hegde, P.G. Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Mater. Today Proc. 2021, 42, 1112–1121. [Google Scholar] [CrossRef]
- Ndankou, C.S.D.; Ștefan, D.S.; Nsami, N.J.; Daouda, K.; Bosomoiu, M. Evaluation of Phenobarbital Adsorption Efficiency on Biosorbents or Activated Carbon Obtained from Adansonia Digitata Shells. Materials 2024, 17, 1591. [Google Scholar] [CrossRef]
- Sun, Y.; Lyu, H.; Gai, L.; Sun, P.; Shen, B.; Tang, J. Biochar-anchored low-cost natural iron-based composites for durable hexavalent chromium removal. Chem. Eng. J. 2023, 476, 146604. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, X.; Chen, N.; Cui, X.; Yu, H.; Feng, Y.; Xing, D.; He, W. Efficient removal of hexavalent chromium from wastewater using a novel sodium alginate-biochar composite adsorbent. J. Water Process Eng. 2024, 64, 105655. [Google Scholar] [CrossRef]
- Burlacu, I.F.; Deák, G.; Favier, L.; Serre, I.P.; Balloy, D. Advanced Catalytic Materials Obtained From Waste For Wastewater Treatment Applications. Univ. Polytech. Buchar. Sci. Bull. Ser. B 2021, 83, 161–166. [Google Scholar]
- Tan, G.; Wu, Y.; Liu, Y.; Xiao, D. Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar—A low-cost and highly effective sorbent. J. Environ. Chem. Eng. 2025, 13, 117662. [Google Scholar] [CrossRef]
- Yu, Y.; An, Q.; Li, Z.; Zhao, B. Synergistic removal of ammonia nitrogen and hexavalent chromium by the hybrid-system of Acinetobacter baumannii AL-6 and original walnut shell biochar in solution: Mechanism and application. J. Environ. Chem. Eng. 2024, 12, 114969. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, F.; Liu, Q.; Mo, X.; Xu, T.; Yi, W.; Xu, Y.; Bai, S.; Liu, L. Simultaneous removal capacity and selectivity of Cd(II) and Ni(II) by KMnO4 modified coconut shell and peach kernel biochars. J. Water Process Eng. 2024, 65, 105862. [Google Scholar] [CrossRef]
- Campbell, R.; Xiao, B.; Mangwandi, C. Production of activated carbon from spent coffee grounds (SCG) for removal of hexavalent chromium from synthetic wastewater solutions. J. Environ. Manag. 2024, 366, 121682. [Google Scholar] [CrossRef] [PubMed]
- Mondal, G.; Sahoo, P.; Banerjee, S.; Nandi, R.; Ghosh, C.; Mandal, J.; Bhattacharyya, P. Utilizing nano zero-valent iron impregnated biochar for removal of hexavalent chromium from water: An assessment through Box-Behnken optimization, kinetics, and isotherm studies. Groundw. Sustain. Dev. 2025, 29, 101446. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, R.; Wu, H.; Jia, X.; Liu, Y.; Zhou, G.; Chen, S.; Zhao, F.; Li, L.; Hu, S. Enhanced bioremediation of hexavalent chromium via Stenotrophomonas acidaminiphila 4–1 assisted with agricultural wastes-derived biochar. Biochem. Eng. J. 2024, 208, 109355. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, l.; Wang, X.; Zhang, G.; Bao, X.; Yan, Z.; Ma, W. One-step synthesis of iron-rich biochar for efficient hexavalent chromium removal: Adsorption-reduction performance, mechanism and column experiments. J. Environ. Chem. Eng. 2025, 13, 115701. [Google Scholar] [CrossRef]
- Mehrabi, N.; Soleimani, M.; Yeganeh, M.M.; Sharififard, H. Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC Adv. 2015, 5, 51470–51482. [Google Scholar] [CrossRef]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Bernardino, C.A.R.; Mahler, C.F.; Veloso, M.C.C.; Romeiro, G.A. Preparation of Biochar from Sugarcane By-product Filter Mud by Slow Pyrolysis and Its Use Like Adsorbent. Waste Biomass Valorization 2017, 8, 2511–2521. [Google Scholar] [CrossRef]
- Wang, J.; Minami, E.; Asmadi, M.; Kawamoto, H. Effect of delignification on thermal degradation reactivities of hemicellulose and cellulose in wood cell walls. J. Wood Sci. 2021, 67, 19. [Google Scholar] [CrossRef]
- López-Beceiro, J.; Díaz-Díaz, A.M.; Álvarez-García, A.; Tarrío-Saavedra, J.; Naya, S.; Artiaga, R. The Complexity of Lignin Thermal Degradation in the Isothermal Context. Processes 2021, 9, 1154. [Google Scholar] [CrossRef]
- Jagnade, P.; Panwar, N.L.; Agarwal, C. Experimental Investigation of Kinetic Parameters of Bamboo and Bamboo Biochar Using Thermogravimetric Analysis Under Non-Isothermal Conditions. Bioenergy Res. 2023, 16, 1143–1155. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, B.; Budai, A.; Jeng, A.; Hao, X.; Wei, D.; Zhang, Y.; Rasse, D. Study of Biochar Properties by Scanning Electron Microscope—Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Commun. Soil Sci. Plant Anal. 2016, 47, 593–601. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Dudło, A.; Michalska, J.; Turek-Szytow, J.; Kobyłecki, R.; Zarzycki, R.; Wichlinski, M.; Surmacz-Gorska, J. Humic substances sorption from wastewater on the biochar produced from the waste materials. J. Environ. Manag. 2024, 370, 122366. [Google Scholar] [CrossRef]
- Kasera, N.; Augoustides, V.; Kolar, P.; Hall, S.G.; Vicente, B. Effect of Surface Modification by Oxygen-Enriched Chemicals on the Surface Properties of Pine Bark Biochars. Processes 2022, 10, 2136. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Saleh, T.A. Isotherm models of adsorption processes on adsorbents and nanoadsorbents. Interface Sci. Technol. 2022, 34, 99–126. [Google Scholar]
- Zhou, X.; Zhou, X. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine. Bioresour. Technol. 2010, 101, 5098–5103. [Google Scholar] [CrossRef] [PubMed]
- Anandkumar, J.; Mandal, B. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J. Hazard. Mater. 2009, 168, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.K. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons. J. Hazard. Mater. 2009, 171, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Yang, J.; Liang, S.; Li, M.; Gan, Q.; Xiao, K.; Hu, J. Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles. Sci. Total Environ. 2018, 628–629, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fang, X.; Yuan, W.; Zhang, X.; Yu, J.; Chen, J.; Qiu, X. Preparing of layered double hydroxide-alginate microspheres for Cr(VI)-contaminated soil remediation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130655. [Google Scholar] [CrossRef]
Elements | Biochar from Peach Kernels Atomic Percentage (%) | Biochar from Grape Pits Atomic Percentage (%) |
---|---|---|
C | 76.05 | 77.23 |
O | 23.83 | 21.09 |
S | 0.11 | 1.36 |
K | - | 0.09 |
Ca | - | 0.23 |
Material | SBET (m2·g−1) | Vt (cm3·g−1) | Reference |
---|---|---|---|
Coffee ground biochar 400 | 9.29 | 0.009 | [24] |
Coffee ground biochar 700 | 4.95 | 0.007 | [24] |
Rice straw biochar | 6.96 | 0.011 | [26] |
Walnut shell biochar | 5.75 | - | [27] |
Pine biochar | 1.24 | 0.097 | [41] |
Peach kernel biochar | 0.344 | 0.003 | [28] |
Peach kernel biochar | 4.4 | 0.007 | Present work |
Grape pit biochar | 6.0 | 0.004 | Present work |
Model | Unit | Biochar—Peach Kernels | Biochar—Grape Pits |
---|---|---|---|
Langmuir | |||
qm | mg∙g−1 | 85.8 | 81.2 |
KL | L∙mg−1 | 9.04 × 10−2 | 5.64 × 10−2 |
RL | 0.68 | 0.78 | |
R2 | 0.992 | 0.984 | |
RMSE | 2.43 | 3.02 | |
χ2 | 1.81 | 3.03 | |
Freundlich | |||
KF | g−1·mg(1−1/n)·L1/n | 17.97 | 11.95 |
1/n | 0.342 | 0.402 | |
R2 | 0.942 | 0.929 | |
RMSE | 6.38 | 6.30 | |
χ2 | 11.10 | 11.11 | |
Sips | |||
qm | mg∙g−1 | 78.54 | 67.57 |
KS | mg−1/n·L1/n | 5.02 × 10−2 | 1.42 × 10−2 |
nS | 0.758 | 0.603 | |
R2 | 0.996 | 0.997 | |
RMSE | 1.73 | 1.18 | |
χ2 | 0.48 | 0.56 | |
Temkin | |||
b | mg·g−1·mol·J−1 | 137.37 | 134.99 |
KT | L·mg−1 | 9.56 × 10−1 | 5.06 × 10−1 |
R2 | 0.973 | 0.964 | |
RMSE | 3.33 | 3.62 | |
χ2 | 2.03 | 2.06 |
Sorbent | Adsorption Capacity (mg·g−1) | Reference |
---|---|---|
Palm shell | [46] | |
PEI/activated carbon | 20.5 | |
Activated carbon (AC) | 12.6 | |
AC from bael fruit shell | 17.3 | [47] |
Waste AC | 10.9 | [48] |
Magnetic biochar (modified by Fe3O4 @ SiO2—NH2 particles) | 27.2 | [49] |
Biochar—iron composite | 81.5 | [23] |
LDH—Al | 17.0 | [50] |
Biochar from peach kernels | 78.54 | Present work |
Biochar from grape pits | 67.57 | Present work |
Model | Unit | Biochar—Peach Kernels | Biochar—Grape Pits |
---|---|---|---|
qe—experimental | mg∙g−1 | 38.9 | 35.2 |
Pseudo-first-order | |||
qe | mg∙g−1 | 38.03 | 35.92 |
k1 | min−1 | 1.42 × 10−1 | 6.49 × 10−3 |
R2 | 0.971 | 0.983 | |
RMSE | 1.94 | 1.45 | |
χ2 | 10.09 | 6.53 | |
Pseudo-second-order | |||
qe | mg∙g−1 | 41.80 | 43.39 |
k2 | g·mg−1·min−1 | 5.43 × 10−4 | 1.70 × 10−4 |
R2 | 0.964 | 0.980 | |
RMSE | 1.48 | 1.28 | |
χ2 | 2.98 | 3.09 | |
Elovich | |||
α | mg·g−1min–1 | 4.106 | 1.073 |
β | g∙mg−1) | 1.47 × 10−1 | 1.25 × 10−1 |
R2 | 0.948 | 0.958 | |
RMSE | 1.77 | 1.85 | |
χ2 | 1.52 | 6.07 |
Material | ∆G° (kJ/mol) | ∆H° (kJ/mol) | ∆S° (J/K/mol) | ||
---|---|---|---|---|---|
283 K | 298 K | 313 K | |||
Biochar—peach kernels | −29.9 | −30.9 | −32.1 | 27.2 | 73.8 |
Biochar—grape pits | −29.1 | −29.7 | −30.8 | 19.9 | 63.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cârjilă, E.R.; Orbuleț, O.D.; Bosomoiu, M.; Modrogan, C.; Tanasă, E.; Dăncilă, A.M.; Gârleanu, G. Agrifood Waste Valorization: Development of Biochar from Peach Kernel or Grape Pits for Cr6+ Removal from Plating Wastewater. Materials 2025, 18, 4151. https://doi.org/10.3390/ma18174151
Cârjilă ER, Orbuleț OD, Bosomoiu M, Modrogan C, Tanasă E, Dăncilă AM, Gârleanu G. Agrifood Waste Valorization: Development of Biochar from Peach Kernel or Grape Pits for Cr6+ Removal from Plating Wastewater. Materials. 2025; 18(17):4151. https://doi.org/10.3390/ma18174151
Chicago/Turabian StyleCârjilă (Mihalache), Elena Raluca, Oanamari Daniela Orbuleț, Magdalena Bosomoiu, Cristina Modrogan, Eugenia Tanasă, Annette Madelene Dăncilă, and Gabriel Gârleanu. 2025. "Agrifood Waste Valorization: Development of Biochar from Peach Kernel or Grape Pits for Cr6+ Removal from Plating Wastewater" Materials 18, no. 17: 4151. https://doi.org/10.3390/ma18174151
APA StyleCârjilă, E. R., Orbuleț, O. D., Bosomoiu, M., Modrogan, C., Tanasă, E., Dăncilă, A. M., & Gârleanu, G. (2025). Agrifood Waste Valorization: Development of Biochar from Peach Kernel or Grape Pits for Cr6+ Removal from Plating Wastewater. Materials, 18(17), 4151. https://doi.org/10.3390/ma18174151