Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Principles
2.2. Materials
2.3. Experimental Equipment
3. Results and Discussion
3.1. Electrochemical Behavior of Metal Deposition
3.2. Cathode Surface Morphology
3.3. Evaluation of Cathode Current Efficiency and Energy Consumption in Solder Electrolytic Refining
3.4. Expansion Experiment of Electrolytic Refining of Solder
3.4.1. Cathodic Deposition Morphology
3.4.2. Proof of Concept Operation of Crude Solder Electrorefining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, F.C.; Low, C.T.J. A review of developments in the electrodeposition of tin. Surf. Coat. Technol. 2016, 288, 79–94. [Google Scholar] [CrossRef]
- Tarselli, M.A. Tin can. Nat. Chem. 2017, 9, 500. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Cao, P.; Li, Y.; Yang, B.; Chen, X.; Xu, B. Clean and sustainable elimination of arsenic–aluminum slag from smelted crude tin via vacuum volatilization—Fractional condensation. J. Clean. Prod. 2024, 452, 142212. [Google Scholar] [CrossRef]
- He, J.; Li, L.; Sun, Y.; Wang, Z.; Lei, Y. Tin separation and recovery using the successive conversion of the self-possessed sulfur from low-grade tin middling. Sep. Purif. Technol. 2025, 356, 129999. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, M.; Bu, J.; Cheng, L.; Ru, J.; Hua, Y.; Wang, D. Understanding the electrochemical behavior of Sn(II) in choline chloride-ethylene glycol deep eutectic solvent for tin powders preparation. Adv. Powder Technol. 2022, 33, 103670. [Google Scholar] [CrossRef]
- Liu, P.; Sivakov, V. Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities. Nanomaterials 2023, 13, 2391. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Guo, T.; Zhang, S.; Wang, J.; Wu, Y.; Chen, Y. Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano Micro Lett. 2019, 11, 62. [Google Scholar] [CrossRef]
- Kim, W.J.; Seo, S.; Lee, S.I.; Kim, D.W.; Kim, M.J. A study on pyro-hydrometallurgical process for selective recovery of Pb, Sn and Sb from lead dross. J. Hazard. Mater. 2021, 417, 126071. [Google Scholar] [CrossRef]
- Ma, J.; Huang, D.; Tian, Y.; Yang, H.; Chen, X.; Xu, B.; Yang, B.; Li, Y. Separation and recovery of tin and copper from tin refining sulfur slag using a new process of airtight sulfuration—Vacuum distillation. J. Clean. Prod. 2022, 378, 134553. [Google Scholar] [CrossRef]
- Saleh, S.M.; Said, S.A.; El-Shahawi, M.S. Extraction and recovery of Au, Sb and Sn from electrorefined solid waste. Anal. Chim. Acta 2001, 436, 69–77. [Google Scholar] [CrossRef]
- Brecka, G.; Hein, K.; Lange, H.J.; Paschen, P. A pyrometallurgical alternative: The refining electrolysis of lead and solder. JOM 1997, 49, 62–64. [Google Scholar] [CrossRef]
- Xiang, C.; Zhu, S.; Song, J.; Li, Y.; Luo, T.; Chang, C.; Qu, J.; Yang, S.; Wang, C.; Chen, Y. Green Electrorefining of Crude Lead with High-Quality Deposits in an Additive-Assisted Methanesulfonic Acid System. ACS Sustain. Chem. Eng. 2022, 10, 11223–11231. [Google Scholar] [CrossRef]
- Chang, C.; Yang, S.; Liu, S.; Wang, H.; Liu, H.; Qu, J.; Jin, W.; Wang, C.; Chen, Y. Energy-Efficient and Green Extraction of Bismuth Metal in Methanesulfonic Acid-Based Membrane Electrochemical Systems. ACS Sustain. Chem. Eng. 2023, 11, 7851–7862. [Google Scholar] [CrossRef]
- Chang, C.; Yang, S.; Dai, J.; Li, J.; Fu, C.; Cui, J.; Zeng, W.; Liu, H.; Qi, J.; Jin, W.; et al. Clean and efficient preparation of metallic bismuth from methane-sulfonate electrolyte in the membrane electrolysis cell. J. Environ. Chem. Eng. 2024, 12, 112798. [Google Scholar] [CrossRef]
- Chang, C.; Yang, S.; Liu, H.; Qu, J.; Qi, J.; Dai, J.; Jin, W.; Huang, T.; Xia, X.; Wang, C.; et al. Revealing electrochemical behavior for high-quality and efficient bismuth deposition. Electrochim. Acta 2024, 487, 144160. [Google Scholar] [CrossRef]
- Zhang, Y.; He, K.; Jin, B.; Luan, J. Electrorefining of Crude Solder for the Production of Fine Solder in Methanesulfonic Acid Medium: Electrolyte Conductivity and Electrorefining Process. ACS Omega 2024, 9, 49778–49785. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Methanesulfonic acid (MSA) in clean processes and applications: A tutorial review. Green Chem. 2024, 26, 8583–8614. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Methanesulfonic Acid (MSA) in Hydrometallurgy. J. Sustain. Metall. 2023, 9, 26–45. [Google Scholar] [CrossRef]
- Li, Y.-G.; Liu, S.-S.; Wang, C.-H.; Luo, T.; Xiang, C.-L.; Li, S.; Chang, C.; Yang, S.-H.; Wang, H.-H.; Chen, Y.-M. Electro-Deposition Behavior in Methanesulfonic-Acid-Based Lead Electro-Refining. J. Sustain. Metall. 2021, 7, 1910–1916. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, Y. Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J. Appl. Electrochem. 2009, 39, 261–267. [Google Scholar] [CrossRef]
- Mohanty, U.S.; Tripathy, B.C.; Singh, P.; Das, S.C. Effect of pyridine and its derivatives on the electrodeposition of nickel from aqueous sulfate solutions. Part II: Polarization behaviour. J. Appl. Electrochem. 2001, 31, 969–972. [Google Scholar] [CrossRef]
- Tripathy, B.C.; Das, S.C.; Hefter, G.T.; Singh, P. Zinc electrowinning from acidic sulfate solutions: Part I: Effects of sodium lauryl sulfate. J. Appl. Electrochem. 1997, 27, 673–678. [Google Scholar] [CrossRef]
- Fletcher, S. Some new formulae applicable to electrochemical nucleation/growth/collision. Electrochim. Acta 1983, 28, 917–923. [Google Scholar] [CrossRef]
- Low, C.T.J.; Kerr, C.; Barker, B.D.; Smith, J.R.; Campbell, S.A.; Walsh, F.C. Electrochemistry of tin deposition from mixed sulphate and methanesulphonate electrolyte. Trans. IMF 2008, 86, 148–152. [Google Scholar] [CrossRef]
- Isaev, V.A.; Grishenkova, O.V.; Zaykov, Y.P. Theory of cyclic voltammetry for electrochemical nucleation and growth. J. Solid State Electrochem. 2018, 22, 2775–2778. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Chen, Y. Electrochemical behaviour of hydrogen evolution reaction on platinum in anhydrous ethanol containing tetraethylammonium bromide. J. Appl. Electrochem. 2019, 49, 539–550. [Google Scholar] [CrossRef]
- Li, Y.-G.; Chang, C.; Qu, J.-J.; Xiang, C.-L.; Luo, T.; Liu, S.-S.; Li, S.; Yang, S.-H.; Wang, H.-H.; Min, X.-B.; et al. Energy-efficient fluorine-free electro-refining of crude lead in a green methanesulfonic acid system. J. Environ. Chem. Eng. 2023, 11, 111580. [Google Scholar] [CrossRef]
- Girgis, M.; Ghali, E. Effect of temperature on cyclic voltammograms during the electrodeposition of lead. Can. J. Chem. 1989, 67, 130–136. [Google Scholar] [CrossRef]
- Xue, Y.; Hua, Y.; Ru, J.; Fu, C.; Wang, Z.; Bu, J.; Zhang, Y. High-efficiency separation of Ni from Cu-Ni alloy by electrorefining in choline chloride-ethylene glycol deep eutectic solvent. Adv. Powder Technol. 2021, 32, 2791–2797. [Google Scholar] [CrossRef]
- Jin, B.; Dreisinger, D.B. A green electrorefining process for production of pure lead from methanesulfonic acid medium. Sep. Purif. Technol. 2016, 170, 199–207. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Wang, X.; Wei, J.; Tong, X.; Xu, R.; Yang, L. Electrochemistry of Tin Deposition from Methanesulfonic Acid. Metals 2024, 14, 87. [Google Scholar] [CrossRef]
- Song, M.; Zhang, Z.; Pennoh, L.T.; Gao, H. Mg storage properties and reaction mechanism of PbSn alloy films in Mg ion batteries. J. Electroanal. Chem. 2024, 952, 117995. [Google Scholar] [CrossRef]
- Jiao, X.; Yang, Z.; Yan, J.; Zhang, J.; Chen, X.; Guan, R. Electrodeposition and Corrosion Behavior of Cu-Sn Alloys in 3.5 wt.% NaCl and 0.1 M HNO3 Solutions. Metals 2025, 15, 426. [Google Scholar] [CrossRef]
Elements | Sn | Pb | Bi | Sb | In | Cu | Ni |
---|---|---|---|---|---|---|---|
Content | 74.358 | 21.178 | 2.028 | 1.814 | 0.259 | 0.178 | 0.0598 |
Elements | Ag | As | Co | Zn | Fe | Cd | Al |
Content | 0.0527 | 0.0383 | 0.0027 | 0.0029 | 0.002 | 0.001 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, Z.; Wang, X.; Xu, W.; Yuan, H.; Liu, Q.; Xu, R.; Yang, L. Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System. Materials 2025, 18, 4122. https://doi.org/10.3390/ma18174122
Yang Y, Wang Z, Wang X, Xu W, Yuan H, Liu Q, Xu R, Yang L. Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System. Materials. 2025; 18(17):4122. https://doi.org/10.3390/ma18174122
Chicago/Turabian StyleYang, Yuantao, Zhaoyi Wang, Xuanbing Wang, Wanli Xu, Haibin Yuan, Qingdong Liu, Ruidong Xu, and Linjing Yang. 2025. "Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System" Materials 18, no. 17: 4122. https://doi.org/10.3390/ma18174122
APA StyleYang, Y., Wang, Z., Wang, X., Xu, W., Yuan, H., Liu, Q., Xu, R., & Yang, L. (2025). Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System. Materials, 18(17), 4122. https://doi.org/10.3390/ma18174122