Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Pharmaceutical Formulations
2.2. Potentiometric Measurements, Apparatus, Analysis Procedure
2.3. Electrode Construction
2.4. Membrane Preparation
3. Results and Discussion
3.1. Characterisation of Octenidine Ion Selective Electrodes by Potentiometric Response
3.2. Selectivity
3.3. Response Time, Reversibility and Potential Drift
3.4. pH Dependence
3.5. Potentiometric Determination of Octenidine
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pawłowski, M. Drug Chemistry, 1st ed.; PZWL Medical Publishing House: Warsaw, Poland, 2020; pp. 51–53. [Google Scholar]
- Zejc, M.; Jelińska, A. Qualitative Assessment of Medicinal Substances and Products, 1st ed.; Scientific Publishing House of the Karol Marcinkowski Medical University: Poznań, Poland, 2010; pp. 14–15. [Google Scholar]
- Miyazawa, T.; Itaya, M.; Burdeos, G.C.; Nakagawa, K.; Miyazawa, T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int. J. Nanomed. 2021, 16, 3937–3999. [Google Scholar] [CrossRef]
- Labena, A.; Hegazy, M.A.; Kamel, W.M.; Elkelish, A.; Hozzein, W.N. Enhancement of A Cationic Surfactant by Capping Nanoparticles: Synthesis, Characterization and Multiple Applications. Molecules 2020, 25, 2007. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Gniazdowska, J. Application of Nanotechnology in Extinguishing Agents. Materials 2022, 15, 8876. [Google Scholar] [CrossRef]
- EMA List of Nationally Authorised Medicinal Products, Procedure No. PSUSA/00002199/202201. Available online: https://www.ema.europa.eu/en/documents/psusa/octenidine-dihydrochloride-phenoxyethanol-list-nationally-authorised-medicinal-products-psusa00002199202201_en.pdf (accessed on 18 June 2025).
- EMA List of Nationally Authorised Medicinal Products, Procedure No. PSUSA/00010748/202007. Available online: https://www.ema.europa.eu/en/documents/psusa/octenidine-list-nationally-authorised-medicinal-products-psusa00010748202007_en.pdf (accessed on 18 June 2025).
- Bailey, D.M.; DeGrazia, C.G.; Hoff, S.J.; Schulenberg, P.L.; O’Connor, J.R.; Paris, D.A.; Slee, A.M. Bispyridinamines: A new class of topical antimicrobial agents as inhibitors of dental plaque. J. Med. Chem. 1984, 27, 1457–1464. [Google Scholar] [CrossRef]
- Hübner, N.O.; Siebert, J.; Kramer, A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Ski. Pharmacol. Physiol. 2010, 23, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7879838.htm (accessed on 18 June 2025).
- Citko, A. The use of octenidine in the treatment of throat inflammation. Farmakoterapia 2023, 33, 25–32. [Google Scholar]
- Malanovic, N.; Ön, A.; Pabst, G.; Zellner, A.; Lohner, K. Octenidine: Novel insights into the detailed killing mechanism of Gram-negative bactria at a cellular and molecular level. Int. J. Antimicrob. Agents 2020, 56, 106146. [Google Scholar] [CrossRef]
- Bukhary, S.; Balto, H. Antibacterial Efficacy of Octenisept, Alexidine, Chlohexidine, and Sodium Hypochlorite against Enterococcus faecalis Biofilms. J. Endod. 2017, 43, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Babalska, Z.Ł.; Korbecka-Paczkowska, M.; Karpiński, T.M. Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals 2021, 14, 1253. [Google Scholar] [CrossRef] [PubMed]
- Llenado, R.A.; Jamieson, R.A. Surfactants. Anal. Chem. 1981, 53, 174–182. [Google Scholar] [CrossRef]
- Idouhar, M.; Tazerouti, A. Spectrophotometric Determination of Cationic Surfactants Using Patent Blue V: Application to the Wastewater Industry in Algiers. J. Surfactants Deterg. 2008, 11, 263–267. [Google Scholar] [CrossRef]
- Shah, M.; Patel, N.; Tripathi, N.; Vyas, V.K. Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade. J. Pharm. Anal. 2022, 12, 15–28. [Google Scholar] [CrossRef]
- Kulkarni, D.; Jaspal, D. Techniques for surfactant detection from wastewater: A review. Int. J. Environ. Anal. Chem. 2023, 105, 1115–1131. [Google Scholar] [CrossRef]
- Wiest, L.; Giroud, B.; Assoumani, A.; Lestremau, F.; Vulliet, E. A multi-family offline SPE LC-MS/MS analytical method for anionic, cationic and non-ionic surfactants quantification in surface water. Talanta 2021, 232, 122441. [Google Scholar] [CrossRef]
- Flieger, J.; Siwek, A.; Pizoń, M.; Czajkowska-Żelazko, A. Ionic liquids as surfactants in micellar liquid chromatography. J. Sep. Sci. 2013, 36, 1530–1536. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Hamed, N.A.; Mansour, F.R. Physicochemical and electrochemical methods for determination of critical micelle concentrations of surfactants: A comprehensive review. Monatshefte Chem. 2022, 153, 125–138. [Google Scholar] [CrossRef]
- Blazheyevskiy, M.Y.; Bulska, E.J.; Tupys, A.M.; Koval’ska, O.V. Titrimetric Methods for Determining Cationic Surfactants. J. Org. Pharm. Chem. 2022, 20, 12–24. [Google Scholar] [CrossRef]
- Lenik, J. Konstrukcja i Zastosowanie Membranowych Elektrod Jonoselektywnych do Oznaczania Wybranych Niesteroidowych Leków Przeciwzapalnych. Ph.D. Thesis, Library of Maria Curie-Skłodowska University, Lublin, Poland, 2005; pp. 31–35. [Google Scholar]
- Budetić, M.; Jozanović, M.; Pukleš, I.; Samardžić, M. Review of potentiometric determination of cationic surfactants. Rev. Anal. Chem. 2024, 43, 20230078. [Google Scholar] [CrossRef]
- Issa, Y.M.; Mohamed, S.H.; Baset, M.A.E. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM. Talanta 2016, 155, 158–167. [Google Scholar] [CrossRef]
- Khaled, E.; Hassan, H.N.A.; Abdelaziz, M.A.; El-Attar, R.O. Novel enzymatic potentiometric approaches for surfactant analysis. Electroanalysis 2017, 29, 716–721. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Ali, T.A.; El-Shahat, M.F.; Al-Sabagh, A.M.; Migahed, M.A.; Khaled, E. Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Anal. Chim. Acta. 2010, 673, 79–87. [Google Scholar] [CrossRef]
- Sakač, N.; Madunić-Čačić, D.; Marković, D.; Ventura, B.D.; Velotta, R.; Ptiček Siročić, A.; Matasović, B.; Sermek, N.; Đurin, B.; Šarkanj, B.; et al. The 1,3-Dioctadecyl-1H-imidazol-3-ium Based Potentiometric Surfactant Sensor for Detecting Cationic Surfactants in Commercial Products. Sensors 2022, 22, 9141. [Google Scholar] [CrossRef]
- Masadome, T.; Yang, J.; Imato, T. Effect of plasticizer on the performance of the surfactant-selective electrode based on a poly (vinyl chloride) membrane with no added ion-exchanger. Microchim. Acta 2004, 144, 217–220. [Google Scholar] [CrossRef]
- Mohamed, G.G.; El-Shahat, M.F.; Al-Sabagh, A.M.; Migahed, M.A.; Ali, T.A. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations. Analyst 2011, 136, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Chougule, V.; Rajmane, M.; Chougule, N.; Desai, A.; Rohile, V.; Inamdar, N. Development of Reverse-Phase High-Performance Liquid Chromatographic and UV-Spectrophotometric Method with Validation for Octenidine Dihydrochloride. Am. J. PharmTech Res. 2022, 12, 179–188. [Google Scholar]
- Polish Pharmacopoeia VII; President of the Office for Registration of Medicinal Products, Medical Devices and Biocidal Products: Warsaw, Poland, 2006; Volume 1, pp. 342.
- Lenik, J. Application of PVC in constructions of ion selective electrodes for pharmaceutical analysis. In Handbook of Polymers for Pharmaceutical Technologies; Processing and Applications; Thakur, V.K., Thakur, M.K., Eds.; Wiley Scrivener Publishing: Hoboken, NJ, USA, 2015; Volume 2, pp. 195–227. [Google Scholar]
- Lenik, J.; Nieszporek, J. Construction of a glassy carbon ibuprofen electrode modified with multi-walled carbon nanotubes and cyclodextrins. Sens. Actuators B Chem. 2018, 255, 2282–2289. [Google Scholar] [CrossRef]
- Lenik, J.; Łyszczek, R. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination. Mater. Sci. Eng. C 2016, 61, 149–157. [Google Scholar] [CrossRef]
- Lenik, J. Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis. Curr. Med. Chem. 2017, 24, 2359–2391. [Google Scholar] [CrossRef]
- Lenik, J.; Sokal, K. A novel polymeric membrane for chlorhexidine determination. Sensors 2023, 23, 9508. [Google Scholar] [CrossRef]
- Sakač, N.; Madunić-Čačić, D.; Karnaš, M.; Đurin, B.; Kovač, I.; Jozanović, M. The influence of plasticizers on the response characteristics of the surfactant sensor for cationic surfactant determination in disinfectants and antiseptics. Sensors 2021, 21, 3535. [Google Scholar] [CrossRef] [PubMed]
- Shawish, H.M.A.; Khedr, A.M.; Abed-Almonem, K.I.; Gaber, M. A comparative study of solid and liquid inner contact benzalkonium chloride ion-selective electrode membranes. Talanta 2012, 101, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Madunić-Čačić, D.; Sak-Bosnar, M.; Galović, O.; Sakač, N.; Matešić-Puač, R. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. Talanta 2008, 76, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
Membrane Composition | PVC, mg | NPOE, mg | NaFPB, mg | KTpClPB, mg | HSBβCD, mg |
---|---|---|---|---|---|
1 | 130 | 60 | 10 | - | - |
2 | 130 | 60 | - | 10 | - |
3 | 130 | 60 | - | 4 | 6 |
Electrode Symbol | Slope S ± SD, mV/Decade | n | Linear Range −logc, M | Standard Potential E0 ± SD, mV | Correlation Coefficient, R2 ± SD | Limit of Detection, M | Time of Measurements * |
---|---|---|---|---|---|---|---|
ISE 1-NaFPB | 30.15 ± 1.61 | 3 | 5–3 | 216.42 ± 2.09 | 0.9980 ± 0.0016 | 1.25 × 10−6 | |
ISE 2-KTpClPB | 28.38 ± 0.34 | 3 | 5–3 | 210.00 ± 1.10 | 0.9999 ± 0.0000 | 3.55 × 10−6 | 1 week |
ISE 3-KTpClPB + HSBβCD | 28.89 ± 0.88 | 3 | 5–3 | 209.65 ± 0.84 | 0.9999 ± 0.0002 | 1.41 × 10−6 | |
PVCE 1-NaFBP | 27.54 ± 2.69 | 4 | 5–3 | 314.36 ± 29.15 | 0.9977 ± 0.0017 | 7.94 × 10−6 | |
PVCE 2-KTpClPB | 31.41 ± 1.14 | 4 | 6–3 | 381.12 ± 45.17 | 0.9990 ± 0.0009 | 5.01 × 10−7 | 1 month |
PVCE 3-KTpClPB +HSBβCD | 32.38 ± 2.22 | 4 | 6–3 | 206.19 ± 48.78 | 0.9960 ± 0.0041 | 7.07 × 10−7 | |
GCE 2-KTpClPB | 29.83 ± 0.56 | 3 | 5–3 | 318.04 ± 13.87 | 0.9985 ± 0.0017 | 2.24 × 10−6 | |
GCE 3-KTpClPB + HSBβCD | 29.86 ± 0.69 | 3 | 5–3 | 216.87 ± 19.84 | 0.9987 ± 0.0016 | 2.82 × 10−6 | 3 days |
K+ | Na+ | Glucose | Glycol | Glycerine | Sucralose | Sodium Tartrate | Citric Acid | |
---|---|---|---|---|---|---|---|---|
ISE 3 | 8.4 × 10−2 | 7.6 × 10−2 | 6.6 × 10−7 | 3.2 × 10−4 | 5.6 × 10−7 | 1.2 × 10−4 | 8.9 × 10−4 | 1.0 × 10−4 |
PVCE 2 | 3.2 × 10−3 | 1.3 × 10−3 | 3.8 × 10−7 | 5.3 × 10−7 | 3.3 × 10−7 | 3.4 × 10−7 | 4.2 × 10−4 | 2.2 × 10−4 |
GCE 2 | 5.1 × 10−3 | 9.5 × 10−4 | 4.5 × 10−7 | 6.2 × 10−7 | 6.0 × 10−7 | 5.1 × 10−7 | 5.7 × 10−4 | 1.0 × 10−4 |
Method | Taken Octenidine Concentration, mg/L | Found Octenidine Concentration ± SD, mg/L | Recovery, % | Relative Error, % |
---|---|---|---|---|
Potentiometry Calibration curve | 12.5 (pure) | 12.6 ± 0.6 | 100.8 | 0.8 |
12.5 (Octeangin) | 12.1 ± 2.3 | 97.0 | 3.2 | |
Potentiometry Standard addition | 12.5 (pure) | 12.7 ± 0.6 | 102.2 | 1.6 |
12.5 (Octeangin) | 11.9 ± 2.8 | 95.8 | 4.8 | |
31.0 (MaxiSeptic) | 32.0 ± 3.1 | 103.3 | 3.1 | |
UV Spectrophotometry [30] | 100 mg Octenisept | 99.8 mg | 99.8 ± 0.05% | |
RP-HPLC [30] | 100 mg Octenisept | 99.6 mg | 99.6 ± 0.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenik, J. Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples. Materials 2025, 18, 4100. https://doi.org/10.3390/ma18174100
Lenik J. Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples. Materials. 2025; 18(17):4100. https://doi.org/10.3390/ma18174100
Chicago/Turabian StyleLenik, Joanna. 2025. "Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples" Materials 18, no. 17: 4100. https://doi.org/10.3390/ma18174100
APA StyleLenik, J. (2025). Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples. Materials, 18(17), 4100. https://doi.org/10.3390/ma18174100